The virtues of omega-3-polyunsaturated fatty acids (ω-3-PUFAs) have garnered considerable acclaim owing to their multifaceted human health benefits. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) represent long-chain ω-3-PUFAs synthesized from the precursor α-linoleic acid (ALA). Conventionally, fish, shellfish, and krill have been the primary sources of omega-3 fatty acids.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) derived from microalgae are considered a promising alternative bioplastic material to replace synthetic plastics. This study evaluated the effects of various drying techniques (sun, freeze, oven and air drying) on PHB recovery from microalgae. Freeze drying recovered the maximum PHBs (6.
View Article and Find Full Text PDFAlgae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO utilization, real-time monitoring, cost-effective harvesting, etc.
View Article and Find Full Text PDFAlgae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production.
View Article and Find Full Text PDFMicroalgae are recognized as potential candidates for resource recovery from wastewater and projected for biorefinery models. This study was undertaken to evaluate the potential of poultry litter and municipal wastewater as nutrient and water sources, for the cultivation of Acutodesmus obliquus for lipids production for biodiesel application. The efficacy of lipid extracted biomass (LEA) as fertilizer for mung bean crops was also assessed in microcosm.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2021
The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost.
View Article and Find Full Text PDFThe outbreak of the coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 that has created huge trepidation worldwide, has a mortality rate of 0.5% to 1% and is growing incessantly. There are currently no therapies and/or vaccines that may help abate this viral disease, but the use of masks and social distancing can limit the spread.
View Article and Find Full Text PDFThe industrialization of integrated algae-aquaculture systems entails appropriate information regarding environmental and economic assessments, field and laboratory analyses, and feasibility studies. Accordingly, Scenedesmus obliquus was cultivated in a raceway pond (300 m), and the algal biomass was used as a protein source for the growth of Nile tilapia (Oreochromis niloticus). Nile tilapia fish was cultivated in five commercial-scale tanks for 44 weeks, having a productivity of 15-20 kg (live weight)·m.
View Article and Find Full Text PDFThis study investigated the dual application of Scenedesmus obliquus for wastewater phycoremediation and biochemical component accumulation in microalgal cells. The microalgae grown in wastewater showed micro-elements uptake and removal efficiencies of 71.2 ± 3.
View Article and Find Full Text PDFMicroalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production.
View Article and Find Full Text PDFMicroalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae.
View Article and Find Full Text PDFDried powdered algae (SDPA), heat treated algae (MHTA), lipid extracted algae (LEA) and protein extracted algae (PEA) were digested to determine biomethane potential. The average CH production rate was ∼2.5-times higher for protein and lipid extracted algae than for whole algae (SDPA and MHTA) whilst the cumulative CH production was higher for pre-treated algae.
View Article and Find Full Text PDFChlorella pyrenoidosa was cultivated in secondary wastewater effluent to assess its nutrient removal capabilities. Wastewaters were obtained from a wastewater treatment plant located in Ouargla, Algeria. The experiments were conducted in winter under natural sunlight in an outdoor open raceway pond situated in the desert area.
View Article and Find Full Text PDFThe objective of this study was to investigate the feasibility of using lipid extracted algae (LEA) as a source for protein and reduced sugar, and the effects of various procedural treatments on their yields. LEA provided comparable yields of protein and reduced sugars to those from total algae. Oven drying provided highest yields of all products followed by freeze drying, while sun drying significantly lowered their yields.
View Article and Find Full Text PDFChlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail.
View Article and Find Full Text PDFThe efficient harvesting of microalgae is considered to be one of the challenging steps of algal biofuel production and a key factor limiting the commercial use of microalgae. To overcome the limitation of metallic electrodes depletion, the application of non-sacrificial electrode was investigated for the electrochemical harvesting (ECH) of microalgae. The effect of applied current, addition of electrolyte and initial pH were parameters investigated.
View Article and Find Full Text PDFThe potential of nitrogen sources supplementing domestic wastewater for the cultivation of microalgae was assessed. Urea, potassium nitrate, sodium nitrate and ammonium nitrate were evaluated for their effect on cultivation and lipid production of Chlorella sorokiniana. Urea showed the highest biomass yield of 0.
View Article and Find Full Text PDF