Publications by authors named "Isabelle Young"

Congenital heart defects (CHDs) occur in about 1% of live births and are the leading cause of infant death due to birth defects. While there have been remarkable efforts to pursue large-scale whole-exome and genome sequencing studies on CHD patient cohorts, it is estimated that these approaches have thus far accounted for only about 50% of the genetic contribution to CHDs. We sought to take a new approach to identify genetic causes of CHDs.

View Article and Find Full Text PDF

Background: Following proteolytic activation, activated blood coagulation factor (F)VIII (FVIIIa) binds to activated platelet membranes, forming the intrinsic tenase complex with activated FIX (FIXa). Previous studies have identified the C1 and C2 domains as the membrane binding domains of FVIII through conserved arginine residues. A membrane binding model for the FVIII C domains proposes that surface-exposed hydrophobic and positively charged residues at each C domain interact with the membrane, yet a comprehensive thermodynamic and structural description of this interaction is lacking.

View Article and Find Full Text PDF

Tumors comprise a complex ecosystem consisting of many cell types that communicate through secreted factors. Targeting these intercellular signaling networks remains an important challenge in cancer research. Cardiotrophin-like cytokine factor 1 (CLCF1) is an interleukin-6 (IL-6) family member secreted by cancer-associated fibroblasts (CAFs) that binds to ciliary neurotrophic factor receptor (CNTFR), promoting tumor growth in lung and liver cancer.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have improved the clinical management of some cancer cases, yet patients still fail to respond to immunotherapy. Dysregulated metabolism is a common feature of many cancers, and metabolites are known to modulate functions in cancer cells. To identify potential metabolic pathways involved in anti-tumor immune response, we employed a metabolic inhibitor-based drug screen in human lung cancer cell lines and examined expression changes in a panel of immune regulator genes.

View Article and Find Full Text PDF

The cancer metastasis process involves dysregulated oncogenic kinase signaling, but how this orchestrates metabolic networks and signal cascades to promote metastasis is largely unclear. Here we report that inhibition of glutamate dehydrogenase 1 (GDH1) and ribosomal S6 kinase 2 (RSK2) synergistically attenuates cell invasion, anoikis resistance, and immune escape in lung cancer and more evidently in tumors harboring epidermal growth factor receptor (EGFR)-activating or EGFR inhibitor-resistant mutations. Mechanistically, GDH1 is activated by EGFR through phosphorylation at tyrosine 135 and, together with RSK2, enhances the cAMP response element-binding protein (CREB) activity via CaMKIV signaling, thereby promoting metastasis.

View Article and Find Full Text PDF