Publications by authors named "Isabelle Rouget"

Cephalopod beaks are remarkable organic structures that play a crucial role in the feeding ecology of these marine molluscs. This study investigates the mechanical properties, microstructure, and elemental composition of beaks from four commercially available cephalopod species: Eledone cirrhosa, Sepia officinalis, Loligo vulgaris, and Sepioteuthis lessoniana. Using nanoindentation, we measured the elastic modulus of the rostrum, revealing that lower beaks are stiffer than upper beaks across all species.

View Article and Find Full Text PDF

The fossil record of gladius-bearing coleoids is scarce and based only on a few localities with geological horizons particularly favourable to their preservation (the so-called Konservat-Lagerstätten), which naturally leads to strongly limited data on geographical distributions. This emphasizes the importance of every new locality providing gladius-bearing coleoids. Here, we assess for the first time the gladius-bearing coleoid taxonomic diversity within the lower Toarcian "Schistes Cartons" of the Causses Basin (southeastern France).

View Article and Find Full Text PDF

Unlabelled: Although patchy, the fossil record of coleoids bears a wealth of information on their soft part anatomy. Here, we describe remains of the axial nerve cord from both decabrachian () and octobrachian () coleoids from the Jurassic. We discuss some hypotheses reflecting on possible evolutionary drivers behind the neuroanatomical differentiation of the coleoid arm crown.

View Article and Find Full Text PDF

In contrast to the well-studied articulated vertebrate jaws, the structure and function of cephalopod jaws remains poorly known. Cephalopod jaws are unique as the two jaw elements do not contact one another, are embedded in a muscular mass and connected through a muscle joint. Previous studies have described the anatomy of the buccal mass muscles in cephalopods and have proposed variation in muscle volume depending on beak shape.

View Article and Find Full Text PDF

The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology.

View Article and Find Full Text PDF

Although soft tissues of coleoid cephalopods record key evolutionary adaptations, they are rarely preserved in the fossil record. This prevents meaningful comparative analyses between extant and fossil forms, as well as the development of a relative timescale for morphological innovations. However, unique 3-D soft tissue preservation of Vampyronassa rhodanica (Vampyromorpha) from the Jurassic Lagerstätte of La Voulte-sur-Rhône (Ardèche, France) provides unparalleled opportunities for the observation of these tissues in the oldest likely relative of extant Vampyroteuthis infernalis.

View Article and Find Full Text PDF

Technical advances in 3D imaging have contributed to quantifying and understanding biological variability and complexity. However, small, dry-sensitive objects are not easy to reconstruct using common and easily available techniques such as photogrammetry, surface scanning, or micro-CT scanning. Here, we use cephalopod beaks as an example as their size, thickness, transparency, and dry-sensitive nature make them particularly challenging.

View Article and Find Full Text PDF

Ontogeny is rarely included in phylogenetic analyses of morphological data. When used, the ontogenetic information is reduced to one character for two or three different ontogenetic stages. Several examples show that current methods miss a major part of the information.

View Article and Find Full Text PDF

Ammonite phylogeny has mainly been established based on a stratigraphic approach, with cladistics underconsidered. The main arguments against the use of cladistics are the supposed large amount of homoplasy and the small number of characters. Resolving the phylogeny of the Hildoceratidae (Early Jurassic) is especially challenging because of its large diversity and disparity.

View Article and Find Full Text PDF

Since the introduction of the cladistic method in systematics, continuous characters have been integrated into analyses but no methods for their treatment have received unanimous support. Some methods require a large number of character states to discretise continuous characters in order to keep the maximum level of information about taxa differences within the coding scheme. Our objective was to assess the impact of increasing the character state number on the outcomes of phylogenetic analyses.

View Article and Find Full Text PDF

Ammonites are prominent in macroevolutionary studies because of their abundance and diversity in the fossil record, but their paleobiology and position in the marine food web are not well understood due to the lack of preserved soft tissue. We present three-dimensional reconstructions of the buccal apparatus in the Mesozoic ammonite Baculites with the use of synchrotron x-ray microtomography. Buccal mass morphology, combined with the coexistence of food remains found in the buccal mass, suggests that these ammonites fed on plankton.

View Article and Find Full Text PDF