Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
August 2023
Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators.
View Article and Find Full Text PDFUrban areas often host exotic plant species, whether managed or spontaneous. These plants are suspected of affecting pollinator diversity and the structure of pollination networks. However, in dense cityscapes, exotic plants also provide additional flower resources during periods of scarcity, and the consequences for the seasonal dynamics of networks still need to be investigated.
View Article and Find Full Text PDFThere is growing interest in urban pollinator communities, although they may be subject to biotic homogenization in densely artificial landscapes. Paris (France) is one of the densest cities in the world, yet over the years many insect pollinator species have been reported there. We conducted in-depth surveys of Parisian green spaces for two years, in order to improve our knowledge of these assemblages.
View Article and Find Full Text PDFPermanent grasslands are suitable habitats for many plant and animal species, among which are pollinating insects that provide a wide range of ecosystem services. A global crisis in pollination ecosystem service has been highlighted in recent decades, partly the result of land-use intensification. At the grassland scale, however, the underlying mechanisms of land-use intensification that affect plant-pollinator interactions and pollination remain understudied.
View Article and Find Full Text PDFEven though urban green spaces may host a relatively high diversity of wild bees, urban environments impact the pollinator taxonomic and functional diversity in a way that is still misunderstood. Here, we provide an assessment of the taxonomic and functional composition of pollinator assemblages and their response to urbanization in the Paris region (France). We performed a spring-to-fall survey of insect pollinators in green spaces embedded in a dense urban matrix and in rural grasslands, using a plant setup standardized across sites and throughout the seasons.
View Article and Find Full Text PDFUrban habitat characteristics create environmental filtering of pollinator communities. They also impact pollinating insect phenology through the presence of an urban heat island and the year-round availability of floral resources provided by ornamental plants.Here, we monitored the phenology and composition of pollinating insect communities visiting replicates of an experimental plant assemblage comprising two species, with contrasting floral traits: and , whose flowering periods were artificially extended.
View Article and Find Full Text PDFCompetitive interactions between plants can affect patterns of allocation to reproductive structures through modulation of resource availability. As floral traits involved in plant attractiveness to pollinators can be sensitive to these resources, competition with any neighbouring species may influence the attractiveness of insect-pollinated plants. While pollination research has primarily focused on above-ground interactions, this study aims at investigating if the presence of a competitor plant can modulate neighbouring insect-pollinated plant attractiveness to pollinators and resulting fecundity, especially through below-ground competitive interactions for soil resources.
View Article and Find Full Text PDFAs pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities.
View Article and Find Full Text PDFUrbanisation, associated with habitat fragmentation, affects pollinator communities and insect foraging behaviour. These biotic changes are likely to select for modified traits in insect-pollinated plants from urban populations compared to rural populations. To test this hypothesis, we conducted an experiment involving four plant species commonly found in both urban and rural landscapes of the Île-de-France region (France): Cymbalaria muralis, Geranium robertianum, Geum urbanum and Prunella vulgaris.
View Article and Find Full Text PDFGiven the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.
View Article and Find Full Text PDFPlant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions.
View Article and Find Full Text PDFBackground: Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are key determinants of plant interactions in ecosystems. Through their effects on competition, they are regulators of the structure of communities. Conversely, the composition of plant assemblages may also influence the AMF colonization dynamics of plant species.
View Article and Find Full Text PDFProc Biol Sci
September 2011
Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors.
View Article and Find Full Text PDFRecent community-level studies have acknowledged that generalist species are more widespread than previously thought and highlighted their preponderant impact on community functioning and evolution. It is suggested that the type of interaction, trophic versus mutualistic, should affect species generalization level; however, no direct comparison has been made yet. Here, we performed such a comparison using 44 plant-insect networks describing either pollination or herbivory communities.
View Article and Find Full Text PDFPollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant-pollinator interactions has not been tested experimentally.
View Article and Find Full Text PDFWe studied the microspatial population structure of the perennial tussock grass, Hyparrhenia diplandra (Poaceae), a facultative agamospermous species of West African savannahs. The microspatial population structure of H. diplandra was investigated by choosing two 100-m(2); quadrats at random from which all individuals were mapped.
View Article and Find Full Text PDFPollen aperture polymorphism is studied in Viola diversifolia, where all plants produce three- and four-apertured pollen grains. We tested whether there are genetic differences among plants for the proportions of the different pollen morphs, and whether the morphs differ in gametophytic performance. Results show that the more apertures a pollen grain has, the more quickly it germinates but that few-apertured pollen grains have faster growing pollen tubes and longer life expectancies.
View Article and Find Full Text PDF