Artificial sweeteners are highly sweet, non-nutritive compounds that have become increasingly popular over recent decades despite research suggesting that their consumption has unintended consequences. Specifically, there is evidence suggesting that some of these chemicals interact with bitter taste receptors, implying that sweeteners likely generate complex chemosensory signals. Here, we report the basic sensory characteristics of sweeteners in Drosophila, a common model system used to study the impacts of diet, and find that all noncaloric sweeteners inhibited appetitive feeding responses at higher concentrations.
View Article and Find Full Text PDFOdorant metabolizing enzymes, considered as critical olfactory perireceptor actors, control the odor molecules reaching the olfactory epithelium by biotransforming them. As an odorant, the mammary pheromone, i.e.
View Article and Find Full Text PDFGenes (Basel)
February 2020
The detection and processing of chemical stimuli involve coordinated neuronal networks that process sensory information. This allows animals, such as the model species , to detect food sources and to choose a potential mate. In peripheral olfactory tissues, several classes of proteins are acting to modulate the detection of chemosensory signals.
View Article and Find Full Text PDFAnimals need to detect in the food essential amino acids that they cannot synthesize. We found that the odorant binding protein OBP19b, which is highly expressed in taste sensilla, is necessary for the detection of several amino acids including the essential l-phenylalanine. The recombinant OBP19b protein was produced and characterized for its binding properties: it stereoselectively binds to several amino acids.
View Article and Find Full Text PDFDesaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in . In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones.
View Article and Find Full Text PDFTo develop and reproduce, animals need long-chain MUFAs and PUFAs. Although some unsaturated FAs (UFAs) can be synthesized by the organism, others must be provided by the diet. The gene, desat1, involved in Drosophila melanogaster UFA metabolism, is necessary for both larval development and for adult sex pheromone communication.
View Article and Find Full Text PDFAnimals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control.
View Article and Find Full Text PDFMorphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia.
View Article and Find Full Text PDFThe evolution of communication is a fundamental biological problem. The genetic control of the signal and its reception must be tightly coadapted, especially in interindividual sexual communication. However, there is very little experimental evidence for tight genetic linkage connecting the emission of a signal and its reception.
View Article and Find Full Text PDFDuring Drosophila embryonic development, various morphogenetic processes require the remodeling of the extracellular matrix. In a previous study, we have identified and characterized a cDNA encoding a novel putative extracellular matrix protein named tenebrin, in the beetle Tenebrio molitor. Here, we examine the expression of the Drosophila ortholog, referred to as Tenectin (Tnc), during embryonic development.
View Article and Find Full Text PDF