The change in the community structure of phytoplankton and bacterioplankton, and in the degree of coupling between them as well as the environmental conditions, have substantial impacts on the transfer of energy to higher trophic levels and finally on the fate of organic matter. The microbial community structure, usually described only by the abundance of the different taxonomic or functional groups, can be extended to include other levels of descriptors, like physiological state and single-cell properties. These features play a role in the ecological regulation of microbial communities but are not generally studied as additional descriptors of the community structure.
View Article and Find Full Text PDFThe widespread presence of pharmaceuticals in wastewater effluents after treatment stands as a significant challenge faced in the field of wastewater management and public health. Governments and the scientific community have worked to meet this urgent need for effective solutions. Nevertheless, the development of detection strategies for pharmaceutical monitorization capable of delivering rapid, on-site, and sensitive responses remains an ongoing necessity.
View Article and Find Full Text PDFA novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out.
View Article and Find Full Text PDFIn recent years, analytical chemistry has been facing new challenges, particularly in developing low-cost, green, and easy-to-reproduce methods. In this work, a simple, reproducible, and low-cost electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor was designed specifically for the detection of trazodone (TZD). Trazodone (TZD) is an antidepressant drug consumed worldwide since the 1970s.
View Article and Find Full Text PDFIn this work, a disposable electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor for the selective determination of diclofenac (DCF) was constructed. The proposed MIP-sensor permits fast (30 min) analysis, is cheap, easy to prepare and has the potential to be integrated with portable devices. Due to its simplicity and efficiency, surface imprinting by electropolymerization was used to prepare a MIP on a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFBiosens Bioelectron
January 2021
The ever-increasing presence of contaminants in environmental waters is an alarming issue, not only because of their harmful effects in the environment but also because of their risk to human health. Pharmaceuticals and pesticides, among other compounds of daily use, such as personal care products or plasticisers, are being released into water bodies. This release mainly occurs through wastewater since the treatments applied in many wastewater treatment plants are not able to completely remove these substances.
View Article and Find Full Text PDFThe reduction of 2-para (iodophenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) is increasingly being used as an indirect method to measure plankton respiration. Its greater sensitivity and shorter incubation time compared to the standard method of measuring the decrease in dissolved oxygen concentration, allows the determination of total and size-fractionated plankton respiration with higher precision and temporal resolution. However, there are still concerns as to the method's applicability due to the toxicity of INT and the potential differential effect of plankton cell wall composition on the diffusion of INT into the cell, and therefore on the rate of INT reduction.
View Article and Find Full Text PDF