Publications by authors named "Ineke H Smit"

Background: Icelandic horses are valued for their additional gaits, but assessing lameness in this breed can be challenging. Pelvic (P) vertical movement asymmetries, differences (D) in minimum (min)/maximum (max) position, are used to quantify impact (PDmin) and push-off (PDmax) hindlimb lameness during the trot, but no established parameters exist for detecting hindlimb lameness in other gaits.

Objective: To evaluate temporal stride parameters and upper-body movement asymmetry after transient hindlimb lameness induction in walk, trot and tölt.

View Article and Find Full Text PDF

Musculoskeletal simulations can provide insights into the underlying mechanisms that govern animal locomotion. In this study, we describe the development of a new musculoskeletal model of the horse, and to our knowledge present the first fully muscle-driven, predictive simulations of equine locomotion. Our goal was to simulate a model that captures only the gross musculoskeletal structure of a horse, without specialized morphological features.

View Article and Find Full Text PDF

In articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer-scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long-term mechanically stable neo-tissue in an orthotopic large animal model.

View Article and Find Full Text PDF

Background And Objective: Lameness assessment in the gaited Icelandic horse is complex. We aimed to describe their kinematic and temporal adaptation strategies in response to forelimb lameness at walk, trot and tölt.

Study Design: In vivo experiment.

View Article and Find Full Text PDF

Background: The inter-relationship between equine thoracolumbar motion and muscle activation during normal locomotion and lameness is poorly understood.

Objective: To compare thoracolumbar and pelvic kinematics and longissimus dorsi (longissimus) activity of trotting horses between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness.

Study Design: Controlled experimental cross-over study.

View Article and Find Full Text PDF

The relationship between lameness-related adaptations in equine appendicular motion and muscle activation is poorly understood and has not been studied objectively. The aim of this study was to compare muscle activity of selected fore- and hindlimb muscles, and movement of the joints they act on, between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Three-dimensional kinematic data and surface electromyography (sEMG) data from the fore- (triceps brachii, latissimus dorsi) and hindlimbs (superficial gluteal, biceps femoris, semitendinosus) were bilaterally and synchronously collected from clinically non-lame horses ( = 8) trotting over-ground (baseline).

View Article and Find Full Text PDF

Knowledge of vertical motion patterns of the axial body segments is a prerequisite for the development of algorithms used in automated detection of lameness. To date, the focus has been on the trot. This study investigates the temporal synchronization between vertical motion of the axial body segments with limb kinematic events in walk and trot across three popular types of sport horses (19 Warmbloods, 23 Iberians, 26 Icelandics) that are known to have different stride kinematics, and it presents novel data describing vertical motion of the axial body segments in tölting and pacing Icelandic horses.

View Article and Find Full Text PDF

Background: Gait kinematics measured during equine gait analysis are typically evaluated by analysing (asymmetry-based) discrete variables (eg, peak values) obtained from continuous kinematic signals (eg, timeseries of datapoints). However, when used for the assessment of complex cases of lameness, such as bilateral lameness, discrete variable analysis might overlook relevant functional adaptations.

Objectives: The overall aim of this paper is to compare continuous and discrete data analysis techniques to evaluate kinematic gait adaptations to lameness.

View Article and Find Full Text PDF

Background: To accommodate training for unilaterally affected patients (e.g. stroke), the Lokomat (a popular robotic exoskeleton-based gait trainer) provides the possibility to set the amount of movement guidance for each leg independently.

View Article and Find Full Text PDF