Publications by authors named "Indraniel Das"

With age, clonal expansions occur pervasively across normal tissues yet only in rare instances lead to cancer, despite being driven by well-established cancer drivers. Characterization of the factors that influence clonal progression is needed to inform interventional approaches. Germline genetic variation influences cancer risk and shapes tumor mutational profile, but its influence on the mutational landscape of normal tissues is not well known.

View Article and Find Full Text PDF

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland.

View Article and Find Full Text PDF

Background: Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718).

View Article and Find Full Text PDF

The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS) data of 4,848 individuals.

View Article and Find Full Text PDF

A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline to map and characterize structural variants in 17,795 deeply sequenced human genomes.

View Article and Find Full Text PDF

Summary: Large-scale human genetics studies are now employing whole genome sequencing with the goal of conducting comprehensive trait mapping analyses of all forms of genome variation. However, methods for structural variation (SV) analysis have lagged far behind those for smaller scale variants, and there is an urgent need to develop more efficient tools that scale to the size of human populations. Here, we present a fast and highly scalable software toolkit (svtools) and cloud-based pipeline for assembling high quality SV maps-including deletions, duplications, mobile element insertions, inversions and other rearrangements-in many thousands of human genomes.

View Article and Find Full Text PDF

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD.

View Article and Find Full Text PDF

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system.

View Article and Find Full Text PDF

The Drug-Gene Interaction database (DGIdb) mines existing resources that generate hypotheses about how mutated genes might be targeted therapeutically or prioritized for drug development. It provides an interface for searching lists of genes against a compendium of drug-gene interactions and potentially 'druggable' genes. DGIdb can be accessed at http://dgidb.

View Article and Find Full Text PDF