Vascular smooth muscle cells (VSMCs) possess significant phenotypic plasticity, shifting between a contractile phenotype and a synthetic state for vascular repair/remodeling. Dysregulated VSMC transformation, marked by excessive proliferation and migration, primarily drives intimal hyperplasia. N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, plays a critical role in gene expression regulation; however, its impact on VSMC plasticity is not fully understood.
View Article and Find Full Text PDFInt J Mol Sci
September 2021
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to 'switch' between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling.
View Article and Find Full Text PDFMonocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function.
View Article and Find Full Text PDF