Publications by authors named "Imilce A Rodriguez-Fernandez"

Lactic acid bacteria (LAB) are widely used as probiotics and in fermented foods, yet their antibiotic resistance profiles remain under-characterized. This study evaluates the antibiotic resistance profiles of two ( ) strains, LpWF (isolated from ) and Lp39 (from cabbage), using broth microdilution methods. Minimum inhibitory concentrations (MICs) and minimum lethal concentrations (MLCs) were determined for six antibiotics.

View Article and Find Full Text PDF

Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single-cell RNA-seq to explore stem-cell-intrinsic changes in the aging intestine.

View Article and Find Full Text PDF

The age-associated decline of regenerative capacity in many tissues is a consequence of stem cell intrinsic and extrinsic perturbations that are only beginning to be understood. To gain insight into mechanisms of this age-related decline, a comprehensive understanding of these perturbations is necessary. Drosophila intestinal stem cells (ISCs) have served as a prime model in which to explore these age-related changes, and in which to identify intervention strategies to improve regenerative capacity and extend lifespan.

View Article and Find Full Text PDF

In adult epithelial stem cell lineages, the precise differentiation of daughter cells is critical to maintain tissue homeostasis. Notch signaling controls the choice between absorptive and entero-endocrine cell differentiation in both the mammalian small intestine and the Drosophila midgut, yet how Notch promotes lineage restriction remains unclear. Here, we describe a role for the transcription factor Klumpfuss (Klu) in restricting the fate of enteroblasts (EBs) in the Drosophila intestine.

View Article and Find Full Text PDF

A decline in protein homeostasis (proteostasis) has been proposed as a hallmark of aging. Somatic stem cells (SCs) uniquely maintain their proteostatic capacity through mechanisms that remain incompletely understood. Here, we describe and characterize a 'proteostatic checkpoint' in Drosophila intestinal SCs (ISCs).

View Article and Find Full Text PDF

Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear.

View Article and Find Full Text PDF

The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster.

View Article and Find Full Text PDF

IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members.

View Article and Find Full Text PDF

The biogenesis of melanosomes is a multistage process that requires the function of cell-type-specific and ubiquitously expressed proteins. OCA2, the product of the gene defective in oculocutaneous albinism type 2, is a melanosomal membrane protein with restricted expression pattern and a potential role in the trafficking of other proteins to melanosomes. The ubiquitous protein complexes AP-3, BLOC-1, and BLOC-2, which contain as subunits the products of genes defective in various types of Hermansky-Pudlak syndrome, have been likewise implicated in trafficking to melanosomes.

View Article and Find Full Text PDF

Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC) for critical processes such as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved throughout the Apicomplexa, but do not appear to be present outside the phylum.

View Article and Find Full Text PDF