Publications by authors named "Ikram Mezghani"

Mammalian mitochondria undergo Ca-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca-activated leak channels involved in mPT.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed serum samples from diabetic patients with diabetic foot ulcers (DFU) to identify proteins that could predict healing and serve as biomarkers for treatment.
  • Among the findings, certain interleukins (IL-10, IL-4, IL-5, IL-6, and IL-13) were elevated in patients who healed, while others (Fractalkine, IL-8, and TNFα) were higher in those who did not.
  • IL-10 emerged as the strongest predictor for healing, suggesting that measuring multiple serum proteins could enhance clinical management of DFU compared to using single biomarkers.
View Article and Find Full Text PDF

Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Currently there are no therapeutic RNAs approved for use in DFUs.

View Article and Find Full Text PDF

Here, we present a protocol for the integration of human skin onto the backs of diabetic immunodeficient mice, providing a versatile in vivo model for mimicking and studying mechanisms involved in impaired cutaneous wound healing. This protocol includes instructions for the grafting of human skin, induction of diabetes using streptozotocin and wounding/post-wounding care of immunodeficient mice, as well as suggested downstream tissue analyses. This preclinical mouse model can be used to validate the efficacy of newly developed wound dressings.

View Article and Find Full Text PDF

Introduction: Diabetes affects 400 million people globally and patients and causes nephropathy, neuropathy, and vascular disease. Amongst these complications, diabetic foot ulcers remain a substantial problem for patients and clinicians. Aggressive wound care and antibiotics remain important for the healing of these chronic wounds, but even when treated these chronic ulcers can lead to infection and amputations.

View Article and Find Full Text PDF

Diabetic foot ulcers are a health crisis that affect millions of individuals worldwide. Current standard of care involves diligent wound care with adjunctive antibiotics and surgical debridement. However, despite this, the majority will still become infected and fail to heal.

View Article and Find Full Text PDF

Diabetic foot ulcers and other chronic wounds with impaired healing can be treated with bioengineered skin or with growth factors. However, most patients do not benefit from these treatments. Here we report the development and preclinical therapeutic performance of a strain-programmed patch that rapidly and robustly adheres to diabetic wounds, and promotes wound closure and re-epithelialization.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic foot ulceration (DFU) is a serious problem for people with diabetes, and scientists are trying to understand it better.
  • Researchers studied over 174,000 cells from different parts of the body to learn more about how these wounds heal.
  • They found special cells that help wounds heal and noticed that healing is linked to certain types of immune cells, which could lead to new ways to treat DFUs.
View Article and Find Full Text PDF

Mast cells (MCs) are granulated, immune cells of the myeloid lineage that are present in connective tissues. Apart from their classical role in allergies, MCs also mediate various inflammatory responses due to the nature of their secretory products. They are involved in important physiological and pathophysiological responses related to inflammation, chronic wounds, and autoimmune diseases.

View Article and Find Full Text PDF

The COVID-19 pandemic has severely disrupted worldwide supplies of viral transport media (VTM) due to widespread demand for SARS-CoV-2 RT-PCR testing. In response to this ongoing shortage, we began production of VTM in-house in support of diagnostic testing in our hospital network. As our diagnostic laboratory was not equipped for reagent production, we took advantage of space and personnel that became available due to closure of the research division of our medical center.

View Article and Find Full Text PDF

The COVID-19 pandemic has severely disrupted worldwide supplies of viral transport media (VTM) due to widespread demand for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription-PCR (RT-PCR) testing. In response to this ongoing shortage, we began production of VTM in-house in support of diagnostic testing in our hospital network. As our diagnostic laboratory was not equipped for reagent production, we took advantage of space and personnel that became available due to closure of the research division of our medical center.

View Article and Find Full Text PDF