Cell-free synthetic biology approaches enable engineering of biomolecular systems exhibiting complex, cell-like behaviors in the absence of living entities. Often essential to these systems are user-controllable mechanisms to regulate gene expression. Here we describe synthetic RNA thermometers that enable temperature-dependent translation in the PURExpress in vitro protein synthesis system.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2015
Although cell-free directed evolution methods have been used to engineer proteins for nearly two decades, selections on more complex phenotypes have largely remained in the domain of cell-based engineering approaches. Here, we review recent conceptual advances that now enable in vitro display of multimeric proteins, integral membrane proteins, and proteins with an expanded amino acid repertoire. Additionally, we discuss methodological improvements that have enhanced the accessibility, efficiency, and robustness of cell-free approaches.
View Article and Find Full Text PDFJ Phys Chem B
February 2014
The encapsulation of proteins and nucleic acids within the nanoscale water core of reverse micelles has been used for over 3 decades as a vehicle for a wide range of investigations including enzymology, the physical chemistry of confined spaces, protein and nucleic acid structural biology, and drug development and delivery. Unfortunately, the static and dynamical aspects of the distribution of water in solutions of reverse micelles complicate the measurement and interpretation of fundamental parameters such as pH. This is a severe disadvantage in the context of (bio)chemical reactions and protein structure and function, which are generally highly sensitive to pH.
View Article and Find Full Text PDFAn optimized reverse micelle surfactant system has been developed for solution nuclear magnetic resonance studies of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Comprising the nonionic 1-decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture is shown to efficiently encapsulate a diverse set of proteins and nucleic acids. Chemical shift analyses of these systems show that high structural fidelity is achieved upon encapsulation.
View Article and Find Full Text PDFDespite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule.
View Article and Find Full Text PDFWe recently developed a display method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli for higher expression and stability. For the neurotensin receptor 1, a G-protein-coupled receptor (GPCR), we had evolved a mutant with a 10-fold increase in functional expression that largely retains wild-type binding and signaling properties and shows higher stability in detergent-solubilized form. We have now evolved three additional human GPCRs.
View Article and Find Full Text PDFPLoS Comput Biol
December 2009
Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the mu-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable kappa-opioid receptor (KOR), we optimized the conditions (i.
View Article and Find Full Text PDF