Publications by authors named "I-Jin Lin"

For decades, studies of snake venoms focused on the venom-ome-specific toxins (VSTs). VSTs are dominant soluble proteins believed to contribute to the main venomous effects and emerged into gene clusters for fast adaptation and diversification of snake venoms. However, the conserved minor venom components, such as snake venom phosphodiesterase (svPDE), remain largely unexplored.

View Article and Find Full Text PDF

Although the majority of noncovalent interactions associated with hydrogen and heavy atoms in proteins and other biomolecules are classical hydrogen bonds between polar N-H or O-H moieties and O atoms or aromatic π electrons, high-resolution X-ray crystallographic models deposited in the Protein Data Bank show evidence for weaker C-H···O hydrogen bonds, including ones involving sp(3)-hybridized carbon atoms. Little evidence is available in proteins for the (even) weaker C-H···S interactions described in the crystallographic literature on small molecules. Here, we report experimental evidence and theoretical verification for the existence of nine aliphatic (sp(3)-hybridized) C-H···S 3-center-4-electron interactions in the protein Clostridium pasteurianum rubredoxin.

View Article and Find Full Text PDF

Stable isotope-labeling methods, coupled with novel techniques for detecting fast-relaxing NMR signals, now permit detailed investigations of paramagnetic centers of metalloproteins. We have utilized these advances to carry out comprehensive assignments of the hyperfine-shifted (13)C and (15)N signals of the rubredoxin from Clostridium pasteurianum (CpRd) in both its oxidized and reduced states. We used residue-specific labeling (by chemical synthesis) and residue-type-selective labeling (by biosynthesis) to assign signals detected by one-dimensional (15)N NMR spectroscopy, to nitrogen atoms near the iron center.

View Article and Find Full Text PDF

The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.

View Article and Find Full Text PDF

A unique feature of Rieske proteins is the pH dependence of their reduction potentials. It has been proposed that protonation of the Nepsilon2 atoms of the two histidine rings ligated to the iron-sulfur cluster is coupled with cluster reduction (electron transfer). We have incorporated [15Ndelta1, 15Nepsilon2]-histidine into the Rieske protein from Thermus thermophilis and have used 15N NMR spectroscopy to determine the pKa values of the histidine residues in the oxidized state of the protein.

View Article and Find Full Text PDF

The rubredoxin from Clostridium pasteurianum (CpRd) provides an excellent system for investigating how the protein sequence modulates the reduction potential of the active site in an iron-sulfur protein. (15)N NMR spectroscopy has allowed us to determine with unprecedented accuracy the strengths of all six key hydrogen bonds between protein backbone amides and the sulfur atoms of the four cysteine residues that ligate the iron in the oxidized (Fe(III)) and reduced (Fe(II)) forms of wild-type CpRd and nine mutants (V44G, V44A, V44I, V44L, V8G, V8A, V8I, V8L, and V8G/V44G). The length (or strength) of each hydrogen bond was inferred from the magnitude of electron spin delocalized across the hydrogen bond from the iron atom onto the nitrogen.

View Article and Find Full Text PDF

Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.

View Article and Find Full Text PDF

15N NMR hyperfine-shift data were collected for wild-type and site-specific mutant (V44I, V44A, and V44G) Clostridium pasteurianum rubredoxins in the oxidized state. Whereas most of the (15)N NMR signals did not exhibit large systematic changes upon mutation of residue 44, the signal from the backbone nitrogen of residue 44 itself (arrows) shifted by approximately 400 ppm. These shifts were used to determine the lengths of the hydrogen bond between the backbone amide of residue 44 and the side-chain sulfur of cysteine-44, which is covalently ligated to the iron of the metal center.

View Article and Find Full Text PDF