Publications by authors named "I M S K Ilankoon"

Achieving circularity in the plastic economy predominantly depends on sourcing higher quality recyclates. Packaging plastic poses a significant challenge as it is often not prioritised for collection or recycling initiatives. The presence of additives, such as printing ink, impedes the quality of recyclates.

View Article and Find Full Text PDF

Microbial fuel cells (MFC) are emerging energy-efficient systems for copper (Cu) electrowinning from waste streams by coupling it with anodic oxidation of organics in wastewater. However, there is a lack of research examining scalable electrocatalysts for Cu electrowinning at low cathodic overpotentials in highly saline catholytes often found in e-waste leachates. The challenge of developing resilient anodic biofilms that withstand the antagonistic effects of ions migrating from catholytes in saline MFC also needs to be addressed.

View Article and Find Full Text PDF

Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms.

View Article and Find Full Text PDF

Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up.

View Article and Find Full Text PDF

Microalgae's exceptional photosynthetic prowess, CO adaptation, and high-value bioproduct accumulation make them prime candidates for microorganism-based biorefineries. However, most microalgae research emphasizes downstream processes and applications rather than fundamental biomass and biochemical balances and kinetic under the influence of greenhouse gases such as CO. Therefore, three distinctly different microalgae species were cultivated under 0% to 20% CO treatments to examine their biochemical responses, biomass production and metabolite accumulations.

View Article and Find Full Text PDF