Publications by authors named "Hyun Sim Woo"

Despite the now infamous coronavirus disease outbreaks caused by severe acute respiratory syndrome coronavirus (SARS-CoV), this virus continues to be a threat to the global population. Although a huge research effort has targeted SARS-CoV, no report exists regarding natural small molecules targeting one of its key enzymes, papain-like protease (PLpro). In this study, nine flavonoids displaying SARS-CoV PLpro inhibitory activity were isolated from the root bark of .

View Article and Find Full Text PDF

(tea) seeds have been identified as potential sources of nutraceutical compounds. In this study, caffeine and theaflavanoside IV were annotated as the most abundant phytochemicals in the seed shells of . Both compound displayed potent inhibitions against protein tyrosine phosphatase 1B (PTP1B) with IC values of 37.

View Article and Find Full Text PDF
Article Synopsis
  • Folk medicine has long utilized certain plants to treat various diseases, including those caused by bacteria, in East Asia and Europe.
  • Researchers isolated bioactive compounds from the leaves and stems of a plant referred to as PJA, identifying key compounds that inhibit bacterial neuraminidase (NA).
  • The study found that specific compounds showed significant NA inhibitory activity, with certain compounds acting as competitive inhibitors and others as non-competitive, demonstrating the potential of PJA as an antibacterial agent.
View Article and Find Full Text PDF

Platycosides, the saponins abundant in Platycodi radix (the root of ), have diverse pharmacological activities and have been used as food supplements. Since deglycosylated saponins exhibit higher biological activity than glycosylated saponins, efforts are on to enzymatically convert glycosylated platycosides to deglycosylated platycosides; however, the lack of diversity and specificities of these enzymes has limited the kinds of platycosides that can be deglycosylated. In the present study, we examined the enzymatic conversion of platycosides and showed that Cytolase PCL5 completely converted platycoside E and polygalacin D3 into deapiose-xylosylated platycodin D and deapiose-xylosylated polygalacin D, respectively, which were identified by LC-MS analysis.

View Article and Find Full Text PDF

Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (1-7), identified as xanthohumol (1), 4'-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7).

View Article and Find Full Text PDF

Austroinulin (AI) and 6-O-acetyl-austroinulin (6-OAAI) are natural diterpenoids isolated from Stevia rebaudiana with anti-inflammatory activity. However, the mechanisms underlying their anti-inflammatory effects are not well understood. The purpose of this study was to investigate the effect of AI and 6-OAAI on nitric oxide (NO) production and their molecular mechanism in LPS-stimulated RAW264.

View Article and Find Full Text PDF

Melanogenesis can be controlled by tyrosinase inhibition or by blocking the maturation processes of tyrosinase and its related proteins. Mangostenone F was isolated from the seedcases of Garcinia mangostana . Mangostenone F was shown to be inactive against tyrosinase (IC50 > 200 μM) but was a potent α-glucosidase inhibitor in vitro (IC50 = 21.

View Article and Find Full Text PDF

Bacterial neuraminidase has been highlighted as a key enzyme for pathogenic infection and sepsis. Six pterocarpans displaying significant levels of neuraminidase inhibitory activity were isolated from the root bark of Lespedeza bicolor. The isolated compounds were identified as three new pterocarpans (1-3) together with known compounds erythrabyssin II (4), lespebuergine G4 (5), and 1-methoxyerythrabyssin II (6).

View Article and Find Full Text PDF