Nonlinear intersubband polaritonic metasurfaces based on coupling of the intersubband nonlinear optical response of quantum-engineered semiconductor heterostructures and electromagnetic modes of nanoresonators provide efficient frequency mixing with moderate pump intensities. The resonant nonlinear optical response, represented as a complex function, can be modulated via Stark tuning of intersubband transition energies under applied voltages. However, achieving full complex amplitude control (both phase and magnitude) remains challenging.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2023
Electrically reconfigurable metasurfaces that overcome the static limitations in controlling the fundamental properties of scattered light are opening new avenues for functional flat optics. This work proposes and experimentally demonstrates electrically phase-tunable mid-infrared metasurfaces based on the polaritonic coupling of Stark-tunable intersubband transitions in semiconductor heterostructures and electromagnetic modes in plasmonic nanoresonators. In the applied voltage range of -3 to +3 V, the local phase tuning of the light reflects from the metasurface, which enables the electrical control of the polarization state and wavefront of the reflected wave.
View Article and Find Full Text PDFVortex beams carrying orbital angular momentum (OAM) have attracted considerable attention for the development of high-capacity wireless communication systems due to their infinite sets of orthogonal modes. However, the practical applications of Laguerre-Gaussian type vortex beams are limited due to the fact that the divergence angle increases as the order of the OAM mode increases. In this work, we present metasurfaces that generate vortex beams carrying OAM modes with reduced divergence angles in the E-band frequency range.
View Article and Find Full Text PDF