Publications by authors named "Hong-Phuc Cudre-Cung"

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood.

View Article and Find Full Text PDF

Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain.

View Article and Find Full Text PDF

Background: Methylmalonic aciduria (MMAuria) is an inborn error of metabolism leading to neurological deterioration. In this study, we used 3D organotypic brain cell cultures derived from embryos of a brain-specific Mut (brain KO) mouse to investigate mechanisms leading to brain damage. We challenged our in vitro model by a catabolic stress (temperature shift).

View Article and Find Full Text PDF

Glutaryl-CoA dehydrogenase (GCDH) is a mitochondrial enzyme that is involved in the degradation of tryptophan, lysine and hydroxylysine. Deficient enzyme activity leads to glutaric aciduria type-I (GA-I). This neurometabolic disease usually manifests with acute encephalopathic crises and striatal neuronal death in early childhood leading to an irreversible dystonic-dyskinetic movement disorder.

View Article and Find Full Text PDF

Using 3D organotypic rat brain cell cultures in aggregates we recently identified 2-methylcitrate (2-MCA) as the main toxic metabolite for developing brain cells in methylmalonic aciduria. Exposure to 2-MCA triggered morphological changes and apoptosis of brain cells. This was accompanied by increased ammonium and decreased glutamine levels.

View Article and Find Full Text PDF