A novel method of AC sensing is presented that uses a double nanohole (DNH) nanoaperture atop a solid-state nanopore (ssNP) to trap analytes and measure their optical and electrical properties. In this method analytes are propelled by an external applied voltage towards the sensor until they are trapped at the DNH-ssNP interface via a self-induced back action (SIBA) plasmonic force. We have previously named this method SIBA Actuated Nanopore Electrophoresis (SANE) sensing and have shown its ability to perform concurrent optical and DC electrical measurements.
View Article and Find Full Text PDFBimodal optical-electrical data generated when a 20 nm diameter silica (SiO) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces.
View Article and Find Full Text PDFBiomed Res Int
September 2021
Interest in the design and manufacture of RNA and DNA aptamers as apta-biosensors for the early diagnosis of blood infections and other inflammatory conditions has increased considerably in recent years. The practical utility of these aptamers depends on the detailed knowledge about the putative interactions with their target proteins. Therefore, understanding the aptamer-protein interactions at the atomic scale can offer significant insights into the optimal apta-biosensor design.
View Article and Find Full Text PDF