Publications by authors named "Hiroshi Udo"

Peroxisome is an intracellular organelle that functions in essential metabolic pathways including β-oxidation of very-long-chain fatty acids and biosynthesis of plasmalogens. Peroxisome biogenesis disorders (PBDs) manifest severe dysfunction in multiple organs including central nervous system (CNS), whilst the pathogenic mechanisms are largely unknown. We recently reported that peroxisome-deficient neural cells secrete an increased level of brain-derived neurotrophic factor (BDNF), resulting in the cerebellar malformation.

View Article and Find Full Text PDF

Whereas short-term plasticity is often initiated on one side of the synapse, long-term plasticity involves coordinated changes on both sides, implying extracellular signaling. We have investigated the possible signaling role of an neurotrophin (ApNT) in facilitation induced by serotonin (5HT) at sensory-to-motor neuron synapses in culture. ApNT is an ortholog of mammalian BDNF, which has been reported to act as either an anterograde, retrograde, or autocrine signal, so that its pre- and postsynaptic sources and targets remain unclear.

View Article and Find Full Text PDF

Whereas short-term synaptic plasticity is often either pre- or postsynaptic, intermediate- and long-term plasticity generally require coordinated pre- and postsynaptic mechanisms. Thus, the transition from presynaptic short-term facilitation (STF) to intermediate-term facilitation (ITF) induced by 5HT at sensory-to-motor neuron synapses requires the recruitment of postsynaptic mechanisms and activation of protein synthesis in both neurons. In the companion paper to this report, we found that presynaptic autocrine signaling by an neurotrophin (ApNT) forms a positive feedback loop that drives the synapses from STF to ITF.

View Article and Find Full Text PDF

Environmental factors during early life stages affect behavioral and physiological phenotypes in adulthood. We examined the effect of photoperiods during development on neurogenesis and affective behaviors during adolescence/adulthood using C57BL/6J mice. Mice were born and raised until weaning under long-day conditions (LDs) or short-day conditions (SDs), followed by a 12L12D cycle until adulthood.

View Article and Find Full Text PDF

One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.

View Article and Find Full Text PDF

Throughout life, we are exposed to a variety of stresses, which may be inevitable and noxious sometimes. During evolution, animals must have acquired some physiological means to counteract stress. Vascular endothelial growth factor (VEGF) is an angiogenic and neurogenic factor, which has been shown to elicit antidepressant-like effects in response to different external stimuli, potentially functioning as an anti-stress molecule.

View Article and Find Full Text PDF

Visual perception is important for acquiring spatial information in many animals, and loss of vision often causes devastating effects on their survival. However, it may be compensated to some extent by utilizing other intact sensory modalities. The cone-rod homeobox (Crx) gene plays a key role in development of photoreceptor cells, but behavioral consequences of the gene deletion have not been well characterized.

View Article and Find Full Text PDF

The present study examined the effects of enzymatically hydrolyzed collagen peptides on the level of hippocampal neurogenesis and emotional behavior in adult mice. For this purpose, two kinds of enzymatically hydrolyzed collagen peptides, the lower or higher molecular weight peptides (LP: below 2,000, HP: about 30,000) were administered orally to C57BL/6 mice for 4 weeks. As a result, the density of proliferating cells in subgranular zone of hippocampus showed a 1.

View Article and Find Full Text PDF

Whereas short-term (minutes) facilitation at Aplysia sensory-motor neuron synapses is presynaptic, long-term (days) facilitation involves synaptic growth, which requires both presynaptic and postsynaptic mechanisms. How are the postsynaptic mechanisms recruited, and when does that process begin? We have been investigating the possible role of spontaneous transmitter release from the presynaptic neuron. In the previous paper, we found that spontaneous release is critical for the induction of long-term facilitation, and this process begins during an intermediate-term stage of facilitation that is the first stage to involve postsynaptic as well as presynaptic mechanisms.

View Article and Find Full Text PDF

Long-term plasticity can differ from short-term in recruiting the growth of new synaptic connections, a process that requires the participation of both the presynaptic and postsynaptic components of the synapse. How does information about synaptic plasticity spread from its site of origin to recruit the other component? The answer to this question is not known in most systems. We have investigated the possible role of spontaneous transmitter release as such a transsynaptic signal.

View Article and Find Full Text PDF

Imaging studies have shown that even the earliest phases of long-term plasticity are accompanied by the rapid recruitment of synaptic components, which generally requires actin polymerization and may be one of the first steps in a program that can lead to the formation of new stable synapses during late-phase plasticity. However, most of those results come from studies of long-term potentiation in rodent hippocampus and might not generalize to other forms of synaptic plasticity or plasticity in other brain areas and species. For example, recruitment of presynaptic proteins during long-term facilitation by 5HT in Aplysia is delayed for several hours, suggesting that whereas activity-dependent forms of plasticity, such as long-term potentiation, involve rapid recruitment of presynaptic proteins, neuromodulatory forms of plasticity, such as facilitation by 5HT, involve more delayed recruitment.

View Article and Find Full Text PDF

Long-term potentiation in hippocampal neurons has stages that correspond to the stages of learning and memory. Early-phase (10-30 min) potentiation is accompanied by rapid increases in clusters or puncta of presynaptic and postsynaptic proteins, which depend on actin polymerization but not on protein synthesis. We have now examined changes in pre- and postsynaptic puncta and structures during glutamate-induced late-phase (3 hr) potentiation in cultured hippocampal neurons.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is implicated as a molecular mediator for adult neurogenesis and behavioral effects of antidepressant drugs. However, these potential roles of VEGF in the CNS have not been clarified in model animals. Here we have created transgenic mice overexpressing a short active variant of VEGF-A (VEGF120) in forebrain.

View Article and Find Full Text PDF

In this study, we evaluated the effects on subjective discomfort among cooks during food preparation through use of a standing aid that we developed to alleviate the workload on the low back in the forward-bent posture. Twelve female cooks who worked in a kitchen in a nursing home were asked to prepare foods in 2 working postures: (a) supported by the standing aid (Aid) and (b) without the aid (No aid). They were instructed to evaluate discomfort in 13-body regions during food preparation and the degree of fatigue at the day's end and to enter their ratings after the end of the workday.

View Article and Find Full Text PDF

The number of nursing home has increased largely in Japan since 1990. The Long-term Care Insurance in 2000 has accelerated the increase of nursing homes. The care giving and cooking in nursing homes have high risk factors of muscle-skeletal diseases (MSDs).

View Article and Find Full Text PDF

Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation.

View Article and Find Full Text PDF

Homer family proteins are encoded by three genes, homer1, 2 and 3. Most of these proteins are expressed constitutively in nervous systems and accumulated in postsynaptic regions. However, the functional significance of these proteins, especially the significance of the distinction among the proteins encoded by homer1, 2 and 3, is still obscure.

View Article and Find Full Text PDF

Application of Clostridium difficile toxin B, an inhibitor of the Rho family of GTPases, at the Aplysia sensory to motor neuron synapse blocks long-term facilitation and the associated growth of new sensory neuron varicosities induced by repeated pulses of serotonin (5-HT). We have isolated cDNAs encoding Aplysia Rho, Rac, and Cdc42 and found that Rho and Rac had no effect but that overexpression in sensory neurons of a dominant-negative mutant of ApCdc42 or the CRIB domains of its downstream effectors PAK and N-WASP selectively reduces the long-term changes in synaptic strength and structure. FRET analysis indicates that 5-HT activates ApCdc42 in a subset of varicosities contacting the postsynaptic motor neuron and that this activation is dependent on the PI3K and PLC signaling pathways.

View Article and Find Full Text PDF

Recent results suggest that long-lasting potentiation at hippocampal synapses involves the rapid formation of clusters or puncta of presynaptic as well as postsynaptic proteins, both of which are blocked by antagonists of NMDA receptors and an inhibitor of actin polymerization. We have investigated whether the increase in puncta involves retrograde signaling through the NO-cGMP-cGK pathway and also examined the possible roles of two classes of molecules that regulate the actin cytoskeleton: Ena/VASP proteins and Rho GTPases. Our results suggest that NO, cGMP, cGK, actin, and Rho GTPases including RhoA play important roles in the potentiation and act directly in both the presynaptic and postsynaptic neurons, where they contribute to the increase in puncta of synaptic proteins.

View Article and Find Full Text PDF

In cultured rat hippocampal neurons, overexpression of Homer1a/Vesl-1S, an inducible protein upregulated by seizure or long-term potentiation, caused a reduction of punctate distribution of a postsynaptic protein Homer1c/Vesl-1L, without significant decrease in its total amount. Clusters of F-actin were also decreased. Treatments of cells with BDNF or a proteasome inhibitor, which cause increase in the expression level of endogenous Homer1a, also resulted in the reduction of Homer1c puncta.

View Article and Find Full Text PDF

The time course and functional significance of the structural changes associated with long-term facilitation of Aplysia sensory to motor neuron synaptic connections in culture were examined by time-lapse confocal imaging of individual sensory neuron varicosities labeled with three different fluorescent markers: the whole-cell marker Alexa-594 and two presynaptic marker proteins-synaptophysin-eGFP to monitor changes in synaptic vesicle distribution and synapto-PHluorin to monitor active transmitter release sites. Repeated pulses of serotonin induce two temporally, morphologically, and molecularly distinct presynaptic changes: (1) a rapid activation of silent presynaptic terminals by filling of preexisting empty varicosities with synaptic vesicles, which parallels intermediate-term facilitation, is completed within 3-6 hr and requires translation but not transcription and (2) a slower generation of new functional varicosities which occurs between 12-18 hr and requires transcription and translation. Enrichment of empty varicosities with synaptophysin accounts for 32% of the newly activated synapses at 24 hr, whereas newly formed varicosities account for 68%.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) is the central regulator of the reproductive axis. Normal sexual maturation depends on the migration of GnRH neurons from the olfactory placode to the hypothalamus during development. Previously, we showed restricted expression of the membrane receptor adhesion-related kinase (Ark) in immortalized cell lines derived from migratory but not postmigratory GnRH neurons.

View Article and Find Full Text PDF