Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the kidneys, colon, and ileum in a MetS-like murine model.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, oxidative stress, and mitochondrial dysfunction. Despite extensive research efforts, effective curative treatments remain elusive, emphasizing the need for innovative therapeutic strategies. Grounding, or earthing, involves direct physical contact with the Earth's surface to facilitate the absorption of negatively charged electrons into the body.
View Article and Find Full Text PDFBackground/objective: There is strong evidence that the tripartite interaction between glucose homeostasis, gut microbiota, and the host immune system plays a critical role in the pathophysiology of type 2 diabetes mellitus (T2DM). We reported previously that peanut shell extract (PSE) improves mitochondrial function in db/db mice by suppressing oxidative stress and inflammation in the liver, brain, and white adipose tissue. This study evaluated the impacts of PSE supplementation on glucose homeostasis, liver histology, intestinal microbiome composition, and the innate immune response in diabetic mice.
View Article and Find Full Text PDFBackground: Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined.
Objective: Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model.
Accumulating evidence shows a strong correlation between type 2 diabetes mellitus, mitochondrial dysfunction, and oxidative stress. We evaluated the effects of dietary peanut shell extract (PSE) supplementation on mitochondrial function and antioxidative stress/inflammation markers in diabetic mice. Fourteen db/db mice were randomly assigned to a diabetic group (DM in AIN-93G diet) and a PSE group (1% wt/wt PSE in AIN-93G diet) for 5 weeks.
View Article and Find Full Text PDFInvasive fungal infections caused by (.) and Mucorales species still represent life-threatening diseases in immunocompromised individuals, and deeper knowledge about fungal interactions with elements of innate immunity, such as complement and platelets, appears essential for optimized therapy. Previous studies showed that galactosaminogalactan secreted by and is deposited on platelets, thereby inducing their activation.
View Article and Find Full Text PDFPlatelets are meanwhile recognized as versatile elements within the immune system and appear to play a key role in the innate immune response to pathogens including fungi. Previous experiments revealed platelet activation by direct contact with the hyphal-associated polysaccharide galactosaminogalactan (GAG). Since secreted fungal products may also be relevant and trigger immune reactions or thrombosis, we screened culture supernatants (SN) of human-pathogenic fungi for their capacity to activate platelets.
View Article and Find Full Text PDFJ Innate Immun
February 2020
Over the last 2 decades, platelets have been recognized as versatile players of innate immunity. The interaction of platelets with fungal pathogens and subsequent processes may critically influence the clinical outcome of invasive mycoses. Since the role of platelets in Candida infections is poorly characterized and controversially discussed, we studied interactions of human platelets with yeast cells, (pseudo-)hyphae, biofilms and secretory products of human pathogenic Candida species applying platelet rich plasma and a whole blood model.
View Article and Find Full Text PDF