Publications by authors named "Hayit Greenspan"

Aging is associated with structural brain changes, cognitive decline, and neurodegenerative diseases. Brain age, an imaging biomarker sensitive to deviations from healthy aging, offers insights into structural aging variations and is a potential prognostic biomarker in neurodegenerative conditions. This study introduces BrainAgeNeXt, a novel convolutional neural network inspired by the MedNeXt framework, designed to predict brain age from T1-weighted magnetic resonance imaging (MRI) scans.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a leading cause of death and long-term disability worldwide, where rapid reperfusion remains critical for salvaging brain tissue. Although CT perfusion (CTP) imaging provides essential hemodynamic information, its limitations-including extended processing times, additional radiation exposure, and variable software outputs-can delay treatment. In contrast, non-contrast head CT (NCHCT) is ubiquitously available in acute stroke settings.

View Article and Find Full Text PDF

Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work, we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan.

View Article and Find Full Text PDF

Purpose: Catheter-based radiofrequency ablation for pulmonary vein isolation has become the first line of treatment for atrial fibrillation in recent years. This requires a rather accurate map of the left atrial sub-endocardial surface including the ostia of the pulmonary veins, which requires dense sampling of the surface and currently takes more than 10 min. The focus of this work is to provide left atrial visualization early in the procedure to ease procedure complexity and enable further workflows, such as using catheters that have difficulty sampling the surface.

View Article and Find Full Text PDF

Aging is associated with structural brain changes, cognitive decline, and neurodegenerative diseases. Brain age, an imaging biomarker sensitive to deviations from healthy aging, offers insights into structural aging variations and is a potential prognostic biomarker in neurodegenerative conditions. This study introduces BrainAgeNeXt, a novel convolutional neural network inspired by the MedNeXt framework, designed to predict brain age from T1-weighted magnetic resonance imaging (MRI) scans.

View Article and Find Full Text PDF
Article Synopsis
  • Innovation in medical imaging using AI and machine learning requires thorough data collection and algorithm improvements, along with careful evaluation of factors like bias and trustworthiness.
  • Successfully integrating AI/ML into clinical settings is challenging and hinges on addressing issues in model design, development, regulatory compliance, and stakeholder collaboration.
  • Tackling these complexities is essential not only for overcoming current obstacles but also for unlocking new opportunities in the field of radiology.
View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing.

View Article and Find Full Text PDF

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples.

View Article and Find Full Text PDF

Background: Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through traditional modalities. Deep learning-enabled ECG analysis for estimation of right ventricular (RV) size or function is unexplored.

Methods And Results: We trained a deep learning-ECG model to predict RV dilation (RVEDV >120 mL/m), RV dysfunction (RVEF ≤40%), and numerical RVEDV and RVEF from a 12-lead ECG paired with reference-standard cardiac magnetic resonance imaging volumetric measurements in UK Biobank (UKBB; n=42 938).

View Article and Find Full Text PDF

The rapid rise of artificial intelligence (AI) in medicine in the last few years highlights the importance of developing bigger and better systems for data and model sharing. However, the presence of Protected Health Information (PHI) in medical data poses a challenge when it comes to sharing. One potential solution to mitigate the risk of PHI breaches is to exclusively share pre-trained models developed using private datasets.

View Article and Find Full Text PDF

The electrocardiogram (ECG) is a ubiquitous diagnostic modality. Convolutional neural networks (CNNs) applied towards ECG analysis require large sample sizes, and transfer learning approaches for biomedical problems may result in suboptimal performance when pre-training is done on natural images. We leveraged masked image modeling to create a vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis.

View Article and Find Full Text PDF

Background: Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through traditional modalities. Deep-learning enabled 12-lead electrocardiogram analysis (DL-ECG) for estimation of RV size or function is unexplored.

Methods: We trained a DL-ECG model to predict RV dilation (RVEDV>120 mL/m), RV dysfunction (RVEF≤40%), and numerical RVEDV/RVEF from 12-lead ECG paired with reference-standard cardiac MRI (cMRI) volumetric measurements in UK biobank (UKBB; n=42,938).

View Article and Find Full Text PDF

Pulmonary embolism (PE) is a common, life threatening cardiovascular emergency. Risk stratification is one of the core principles of acute PE management and determines the choice of diagnostic and therapeutic strategies. In routine clinical practice, clinicians rely on the patient's electronic health record (EHR) to provide a context for their medical imaging interpretation.

View Article and Find Full Text PDF

Objective: To assess the performance of convolutional neural networks (CNNs) for semiautomated segmentation of hepatocellular carcinoma (HCC) tumors on MRI.

Methods: This retrospective single-center study included 292 patients (237 M/55F, mean age 61 years) with pathologically confirmed HCC between 08/2015 and 06/2019 and who underwent MRI before surgery. The dataset was randomly divided into training (n = 195), validation (n = 66), and test sets (n = 31).

View Article and Find Full Text PDF

MRI's T relaxation time is a valuable biomarker for neuromuscular disorders and muscle dystrophies. One of the hallmarks of these pathologies is the infiltration of adipose tissue and a loss of muscle volume. This leads to a mixture of two signal components, from fat and from water, to appear in each imaged voxel, each having a specific T relaxation time.

View Article and Find Full Text PDF

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) diagnosis is usually performed by analyzing contrast-weighted images, where pathology is detected once it reached a certain visual threshold. Computer-aided diagnosis (CAD) has been proposed as a way for achieving higher sensitivity to early pathology.

Purpose: To compare conventional (i.

View Article and Find Full Text PDF

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients.

View Article and Find Full Text PDF

Purpose: To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.

Materials And Methods: This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation.

View Article and Find Full Text PDF

Infiltration of fat into lower limb muscles is one of the key markers for the severity of muscle pathologies. The level of fat infiltration varies in its severity across and within patients, and it is traditionally estimated using visual radiologic inspection. Precise quantification of the severity and spatial distribution of this pathological process requires accurate segmentation of lower limb anatomy into muscle and fat.

View Article and Find Full Text PDF

The recent success of learning-based algorithms can be greatly attributed to the immense amount of annotated data used for training. Yet, many datasets lack annotations due to the high costs associated with labeling, resulting in degraded performances of deep learning methods. Self-supervised learning is frequently adopted to mitigate the reliance on massive labeled datasets since it exploits unlabeled data to learn relevant feature representations.

View Article and Find Full Text PDF

Background And Objective: Evaluation of the right ventricle (RV) is a key component of the clinical assessment of many cardiovascular and pulmonary disorders. In this work, we focus on RV strain classification from patients who were diagnosed with pulmonary embolism (PE) in computed tomography pulmonary angiography (CTPA) scans. PE is a life-threatening condition, often without warning signs or symptoms.

View Article and Find Full Text PDF

We present a new classification approach for live cells, integrating together the spatial and temporal fluctuation maps and the quantitative optical thickness map of the cell, as acquired by common-path quantitative-phase dynamic imaging and processed with a deep-learning framework. We demonstrate this approach by classifying between two types of cancer cell lines of different metastatic potential originating from the same patient. It is based on the fact that both the cancer-cell morphology and its mechanical properties, as indicated by the cell temporal and spatial fluctuations, change over the disease progression.

View Article and Find Full Text PDF

Objective: At present, there is no consensus on the best strategy for interpreting the cardiopulmonary exercise test's (CPET) results. This study is aimed at assessing the potential of using computer-aided algorithms to evaluate CPET data for identifying chronic heart failure (CHF) and chronic obstructive pulmonary disease (COPD).

Methods: Data from 234 CPET files from the Pulmonary Institute, at Sheba Medical Center, and the Givat-Washington College, both in Israel, were selected for this study.

View Article and Find Full Text PDF