Publications by authors named "Hayedeh Behzad"

Single-cell genomics is applied to environmental samples as a method to solve the problems of current metagenomics. However, in the fluorescence-activated cell sorting-based cell isolation and subsequent whole genome amplification, the sorting efficiency and the sequence quality are greatly affected by the type of target environment, limiting its adaptability. Here, we developed an improved single-cell genomics platform, named SAG-gel, which utilizes gel beads for single-cell isolation, lysis, and whole genome amplification.

View Article and Find Full Text PDF

The demand for novel, robust microbial biocatalysts for use in industrial and pharmaceutical applications continues to increase rapidly. As a result, there is a need to develop advanced tools and technologies to exploit the vast metabolic potential of unculturable microorganisms found in various environments. Single-cell and functional metagenomics studies can explore the enzymatic potential of entire microbial communities in a given environment without the need to culture the microorganisms.

View Article and Find Full Text PDF

Background: Global climate change together with growing desertification is leading to increased dust emissions to the atmosphere, drawing attention to possible impacts on marine ecosystems receiving dust deposition. Since microorganisms play important roles in maintaining marine homeostasis through nutrient cycling and carbon flow, detrimental changes in the composition of marine microbiota in response to increased dust input could negatively impact marine health, particularly so in seas located within the Global Dust Belt. Due to its strategic location between two deserts and unique characteristics, the Red Sea provides an attractive semi-enclosed "megacosm" to examine the impacts of large dust deposition on the vastly diverse microbiota in its exceptionally warm oligotrophic waters.

View Article and Find Full Text PDF

Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying "-omics" sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput.

View Article and Find Full Text PDF

Dust and sandstorm events inject substantial quantities of foreign microorganisms into global ecosystems, with the ability to impact distant environments. The majority of these microorganisms originate from deserts and drylands where the soil is laden with highly stress-resistant microbes capable of thriving under extreme environmental conditions, and a substantial portion of them survive long journeys through the atmosphere. This large-scale transmission of highly resilient alien microbial contaminants raises concerns with regards to the invasion of sensitive and/or pristine sink environments, and to human health-concerns exacerbated by increases in the rate of desertification.

View Article and Find Full Text PDF
Article Synopsis
  • ANGPTL4 plays a significant role in enhancing blood vessel formation (neovascularization) in tendons, particularly after injury or mechanical loading.
  • Cyclic loading triggers the production and release of ANGPTL4 from human tendon cells through the activation of TGF-β and HIF-1α pathways.
  • Targeting ANGPTL4 and its associated signaling pathways could offer new strategies for improving tendon repair and adaptation by regulating vascular growth in tendon tissues.
View Article and Find Full Text PDF

Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways.

View Article and Find Full Text PDF

Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies.

View Article and Find Full Text PDF

Objective: Clinical studies have suggested an association between dyslipidemia and tendon injuries or chronic tendon pain; the mechanisms underlying this association are not yet known. The objectives of this study were (1) to evaluate the impact of a high fat diet on the function of load-bearing tendons and on the distribution in tendons of oxidized low density lipoprotein (oxLDL), and (2) to examine the effect of oxLDL on tendon fibroblast proliferation and gene expression.

Methods: Gene expression (Mmp2, Tgfb1, Col1a1, Col3a1), fat content (Oil Red O staining), oxLDL levels (immunohistochemistry) and tendon biomechanical properties were examined in mice (C57Bl/6 or ApoE -/-) receiving a standard or a high fat diet.

View Article and Find Full Text PDF

Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5β1 integrin receptors.

View Article and Find Full Text PDF

Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain).

View Article and Find Full Text PDF

Introduction: We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis.

Methods: Primary human tenocytes were stimulated with an established human mast cell line (HMC-1).

View Article and Find Full Text PDF

Background: The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza.

Methods: The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) was combined with SVV to stimulate peripheral blood mononuclear cells (PBMCs) in vitro to determine the cytokine response in dendritic cell subsets. Stimulated PBMCs were then challenged with live influenza virus to mimic the response to natural infection following vaccination, using previously identified T-cell correlates of protection.

View Article and Find Full Text PDF

We have investigated phosphatidylinositol 3-kinase (PI3K)-dependent survival signalling pathways using several cytokines in three different hemopoietic cell lines, MC/9, FDC-P1, and TF-1. Cytokines caused PI3K- and PKB-dependent phosphorylation of FOXO3a (previously known as FKHRL1) at three distinct sites. Following cytokine withdrawal or PI3K inhibition, both of which are known to lead to apoptosis, there was a loss of FOXO3a phosphorylation, and a resulting increase in forkhead transcriptional activity, along with increased expression of Fas Ligand (FasL), which could be detected at the cell surface.

View Article and Find Full Text PDF