Publications by authors named "Hasthi Ram"

Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved.

View Article and Find Full Text PDF

Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity.

View Article and Find Full Text PDF

Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits.

View Article and Find Full Text PDF

Unlabelled: Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice.

View Article and Find Full Text PDF

Heavy metal contamination of agricultural fields has become a global concern as it causes a direct impact on human health. Rice is the major food crop for almost half of the world population and is grown under diverse environmental conditions, including heavy metal-contaminated soil. In recent years, the impact of heavy metal contamination on rice yield and grain quality has been shown through multiple approaches.

View Article and Find Full Text PDF

Among the 113 lipases present in rice genome, bran and endosperm-specific lipases were identified and lipase activity for one of the selected lipase gene is demonstrated in yeast. Rice bran is nutritionally superior than endosperm as it has major reservoirs of various minerals, vitamins, essential mineral oils and other bioactive compounds, however it is often under-utilized as a food product due to bran instability after milling. Various hydrolytic enzymes, such as lipases, present in bran causes degradation of the lipids present and are responsible for the bran instability.

View Article and Find Full Text PDF

Real-time quantitative polymerase chain reaction (RT-qPCR) is the most common approach to quantify changes in gene expression. Appropriate internal reference genes are essential for normalization of data of RT-qPCR. In the present study, we identified suitable reference genes for analysis of gene expression in rice seedlings subjected to different heavy metal stresses such as deficiencies of iron and zinc and toxicities of cobalt, cadmium and nickel.

View Article and Find Full Text PDF

Iron is not only important for plant physiology, but also a very important micronutrient in human diets. The vacuole is the main site for accumulation of excess amounts of various nutrients and toxic substances in plant cells. During the past decade, many Vacuolar Iron Transporter (VIT) and VIT-Like (VTL) genes have been identified and shown to play important roles in iron homeostasis in different plants.

View Article and Find Full Text PDF

Rice, a staple food worldwide, contains varying amounts of nutrients in different grain tissues. The underlying molecular mechanism of such distinct nutrient partitioning remains poorly investigated. Here, an optimized rapid laser capture microdissection (LCM) approach was used to individually collect pericarp, aleurone, embryo and endosperm from grains 10 days after fertilization.

View Article and Find Full Text PDF

In the Arabidopsis thaliana shoot apical meristem (SAM) the expression domains of Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN) genes are separated by a narrow boundary region from which new organs are initiated. Disruption of this boundary through either loss of function or ectopic expression of HD-ZIPIII and KAN causes ectopic or suppression of organ formation respectively, raising the question of how these transcription factors regulate organogenesis at a molecular level. In this study we develop a multi-channel FACS/RNA-seq approach to characterize global patterns of gene expression across the HD-ZIPIII-KAN1 SAM boundary.

View Article and Find Full Text PDF

Rice has been a staple food for more than half of the global population. Different parts of rice grains contain different amounts of macro- and micro-nutrients. Polished white rice, which is the main form of rice consumption, mainly contains starch, however, the bran and germ, which are removed during polishing, contain large amounts of micronutrients and bioactive compounds.

View Article and Find Full Text PDF

Iron is one of the important micronutrients that is required for crop productivity and yield-related traits. To address the Fe homeostasis in crop plants, multiple transporters belonging to the category of major facilitator superfamily are being explored. In this direction, earlier vacuolar iron transporters (VITs) have been reported and characterized functionally to address biofortification in cereal crops.

View Article and Find Full Text PDF

Insertional mutagenesis is an indispensable tool for engendering a mutant population using exogenous DNA as the mutagen. The advancement in the next-generation sequencing platform has allowed for faster screening and analysis of generated mutated populations. Rice is a major staple crop for more than half of the world's population; however, the functions of most of the genes in its genome are yet to be analyzed.

View Article and Find Full Text PDF

Metal Tolerance Proteins (MTPs) are the class of membrane proteins involved in the transport of metals, mainly Zn, Mn, Fe, Cd, Co and Ni, and confer metal tolerance in plants. In the present study, a comprehensive molecular analysis of rice MTP genes was performed to understand the evolution, distribution and expression dynamics of MTP genes. Exploration of the whole genome re-sequencing information available for three thousand rice genotypes highlighted the evolution and allelic diversity of MTP genes.

View Article and Find Full Text PDF

Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways.

View Article and Find Full Text PDF

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains.

View Article and Find Full Text PDF