A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays.
View Article and Find Full Text PDFSepsis-induced coagulopathy (SIC) is a severe and frequent complication of sepsis, which is associated with high mortality in patients. So far, attempts have failed to establish a global standard of care in this difficult-to-treat indication. Anticoagulation with a dual inhibitor of the coagulation factors IIa (FIIa, thrombin) and Xa (FXa) has the potential to improve the treatment of life-threatening acute coagulation disorders, such as SIC.
View Article and Find Full Text PDFTarget 2035 is a global initiative that seeks to identify a pharmacological modulator of most human proteins by the year 2035. As part of an ongoing series of annual updates of this initiative, we summarise here the efforts of the EUbOPEN project whose objectives and results are making a strong contribution to the goals of Target 2035. EUbOPEN is a public-private partnership with four pillars of activity: (1) chemogenomic library collections, (2) chemical probe discovery and technology development for hit-to-lead chemistry, (3) profiling of bioactive compounds in patient-derived disease assays, and (4) collection, storage and dissemination of project-wide data and reagents.
View Article and Find Full Text PDFJ Chem Inf Model
November 2024
The CACHE challenges are a series of prospective benchmarking exercises to evaluate progress in the field of computational hit-finding. Here we report the results of the inaugural CACHE challenge in which 23 computational teams each selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson's disease target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and presumably low druggability of the target is a challenge to computational hit finding methods.
View Article and Find Full Text PDFTarget 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins.
View Article and Find Full Text PDFUSP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor.
View Article and Find Full Text PDFRSC Med Chem
January 2022
The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from Aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases.
View Article and Find Full Text PDFSmall-molecule inhibitors of hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) are currently under clinical development as novel treatment options for chronic kidney disease (CKD) associated anemia. Inhibition of HIF-PH mimics hypoxia and leads to increased erythropoietin (EPO) expression and subsequently increased erythropoiesis. Herein we describe the discovery, synthesis, structure-activity relationship (SAR), and proposed binding mode of novel 2,4-diheteroaryl-1,2-dihydro-3H-pyrazol-3-ones as orally bioavailable HIF-PH inhibitors for the treatment of anemia.
View Article and Find Full Text PDFThe activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations.
View Article and Find Full Text PDFThe transcription factors hypoxia-inducible factor-1 and -2 (HIF-1 and HIF-2) orchestrate a multitude of processes that allow tumor cells to survive under conditions of low oxygen and nutrients, and that lead to resistance to some apoptotic pathways and facilitate invasion and metastasis. Therefore, inhibition of transactivation by HIF has become an attractive target in cancer research. Herein we present the results of a cell-based screening approach that led to the discovery of substituted 1H-pyrazole-3-carboxamides.
View Article and Find Full Text PDF