Publications by authors named "Harshal Jayeshkumar Patel"

The human brain exhibits asymmetric hemispheric activity at night; this plays a crucial role in cognitive impairment from sleep deprivation. Although there have been many investigations on this topic, there are no studies on hemispheric differences in the consumption of high-energy phosphates (HEP). We present here a new data analysis of our previously published study in which subjects were measured for changes in high-energy phosphate (HEP), tCr/tNAA, and Glu/TNAA during subacute sleep deprivation (21 h) and cognitive tests.

View Article and Find Full Text PDF

Introduction: Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex.

Method: To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS.

View Article and Find Full Text PDF

The inverse effects of creatine supplementation and sleep deprivation on high energy phosphates, neural creatine, and cognitive performances suggest that creatine is a suitable candidate for reducing the negative effects of sleep deprivation. With this, the main obstacle is the limited exogenous uptake by the central nervous system (CNS), making creatine only effective over a long-term diet of weeks. Thus far, only repeated dosing of creatine over weeks has been studied, yielding detectable changes in CNS levels.

View Article and Find Full Text PDF

Oral stereognosis is the ability to recognize, discriminate and localize a bolus in the oral cavity. Clinical observation indicates deficits in oral stereognosis in patients with vascular or neurodegenerative diseases particularly affecting the parietal lobes. However, the precise neural representation of oral stereognosis remains unclear whereas the neural network of manual stereognosis has already been identified.

View Article and Find Full Text PDF

Robots are ever more relevant for everyday life, such as healthcare or rehabilitation, as well as for modern industrial environment. One important issue in this context is the way we perceive robots and their actions. From our previous study, evidence exists that sex can affect the way people perceive certain robot's actions.

View Article and Find Full Text PDF

Immunohistochemical data based on isocitrate-dehydrogenase (IDH) mutation status have redefined glioma as a whole-brain disease, while occult tumor cell invasion along white matter fibers is inapparent in conventional magnetic resonance imaging (MRI). The functional and prognostic impact of focal glioma may however relate to the extent of white matter involvement. We used diffusion tensor imaging (DTI) to investigate microstructural characteristics of whole-brain normal-appearing white matter (NAWM) in relation to cognitive functions as potential surrogates for occult white matter involvement in glioma.

View Article and Find Full Text PDF

Selective inhibition describes the stopping of an action while other actions are further executed. It can be differentiated between two strategies to stop selectively: the fast but global stop all, then discriminate strategy and the slower but more selective first discriminate, then stop strategy. It is assumed that the first discriminate, then stop strategy is especially used when information regarding which action might have to be stopped is already available beforehand.

View Article and Find Full Text PDF

Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been reported to increase the firing rates of neurons and to modulate the gamma-aminobutyric acid (GABA) concentration. To date, knowledge about the nature and duration of these tDCS induced effects is incomplete. We aimed to investigate long-term effects of anodal tDCS over M1 on GABA dynamics in humans.

View Article and Find Full Text PDF

Background: Affective dysfunctions are common in patients with Parkinson's disease, but the underlying neurobiological deviations have rarely been examined. Parkinson's disease is characterized by a loss of dopamine neurons in the substantia nigra resulting in impairment of motor and non-motor basal ganglia-cortical loops. Concerning emotional deficits, some studies provide evidence for altered brain processing in limbic- and lateral-orbitofrontal gating loops.

View Article and Find Full Text PDF