Publications by authors named "Hanqin Zou"

Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (LiS), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).

View Article and Find Full Text PDF
Article Synopsis
  • The research explores the use of porous organic cages (POCs) as quasi-solid-state electrolytes (QSSEs) in lithium-metal batteries (LMBs), highlighting their potential for improving ion transport.
  • The POC-based QSSE exhibits impressive properties, including a Li transference number of 0.67, ionic conductivity of 1.25 × 10 S cm, and low activation energy of 0.17 eV, enabling efficient lithium deposition and reversible plating/stripping for over 2000 hours.
  • As a result, the LMB using this QSSE shows strong cycling performance, with 85% capacity retention after 1000 cycles, suggesting POCs could also benefit other energy-storage systems like sodium and potassium
View Article and Find Full Text PDF