Publications by authors named "Han A Reum Lee"

Previously, we have shown that mitochondrial transplantation in the sepsis model has immune modulatory effects. The mitochondrial function could have different characteristics dependent on cell types. Here, we investigated whether the effects of mitochondrial transplantation on the sepsis model could be different depending on the cell type, from which mitochondria were isolated.

View Article and Find Full Text PDF

Immune suppression is known to occur during sepsis. Endotoxin tolerance is considered a mechanism of immune suppression in sepsis. However, the timing and serial changes in endotoxin tolerance have not been fully investigated.

View Article and Find Full Text PDF

Steroids are currently being used in sepsis, particularly in septic shock. However, clinical trials to date have shown contradictory results. This could be attributed to the different patient endotypes and steroid doses, which have also contributed to the inconclusive results.

View Article and Find Full Text PDF

Alzheimer's disease (AD) animal studies have reported that mesenchymal stem cells (MSCs) have therapeutic effects; however, clinical trial results are controversial. Neprilysin (NEP) is the main cleavage enzyme of -amyloid (A), which plays a major role in the pathology and etiology of AD. We evaluated whether transplantation of MSCs with NEP gene modification enhances the therapeutic effects in an AD animal model and then investigated these pathomechanisms.

View Article and Find Full Text PDF

Intra-abdominal infection (IAI) is a common and important cause of infectious mortality in intensive care units. Adequate source control and appropriate antimicrobial regimens are key in the management of IAI. In community-acquired IAI, guidelines recommend the use of different antimicrobial regimens according to severity.

View Article and Find Full Text PDF

Background: Sepsis has a high mortality rate, but no specific drug has been proven effective, prompting the development of new drugs. Immunologically, sepsis can involve hyperinflammation, immune paralysis, or both, which might pose challenges during drug development. Recently, mitochondrial transplantation has emerged as a treatment modality for various diseases involving mitochondrial dysfunction, but it has never been tested for sepsis.

View Article and Find Full Text PDF

Background: The effects of hyperbaric oxygen therapy (HBOT) in sepsis remain unclear. This study evaluated its effects on acute liver injury and survival in a rat model.

Methods: Cecal slurry peritonitis was induced in male rats, which were then randomly allocated into the HBOT and control groups.

View Article and Find Full Text PDF

Compared to a plasmid, viral, and other delivery systems, direct Cas9/sgRNA protein delivery has several advantages such as low off-targeting effects and non-integration, but it still has limitations due to low transfer efficiency. As such, the CRISPR/Cas9 system is being developed in combination with nano-carrier technology to enhance delivery efficiency and biocompatibility. We designed a microbubble-nanoliposomal particle as a Cas9/sgRNA riboprotein complex carrier, which effectively facilitates local delivery to a specific site when agitated by ultrasound activation.

View Article and Find Full Text PDF

Background: Protein-based Cas9 in vivo gene editing therapeutics have practical limitations owing to their instability and low efficacy. To overcome these obstacles and improve stability, we designed a nanocarrier primarily consisting of lecithin that can efficiently target liver disease and encapsulate complexes of Cas9 with a single-stranded guide RNA (sgRNA) ribonucleoprotein (Cas9-RNP) through polymer fusion self-assembly.

Results: In this study, we optimized an sgRNA sequence specifically for dipeptidyl peptidase-4 gene (DPP-4) to modulate the function of glucagon-like peptide 1.

View Article and Find Full Text PDF

Sustained release of bioactive molecules from delivery systems is a common strategy for ensuring their prolonged bioactivity and for minimizing safety issues. However, residual toxic reagents, the use of harsh organic solvents, and complex fabrication procedures in conventional delivery systems are considered enormous impediments toward clinical use. Herein, we describe bone morphogenetic protein-2 (BMP-2)-immobilized porous polycaprolactone particles with unique leaf-stacked structures (LSS particles) prepared using clinically feasible materials and procedures.

View Article and Find Full Text PDF

Background: For the effective bone regeneration with appropriate pathological/physiological properties, a variety of bone fillers have been adapted as a therapeutic treatment. However, the development of ideal bone fillers is still remained as a big challenge in clinical practice. The main aims of this study are i) fabrication of a highly porous PCL beads; and ii) the estimation of the potential use of the porous PCL beads as a bone filler through preliminary animal study.

View Article and Find Full Text PDF