Background: The organization of the brain into distinct networks increases (i.e., differentiation) during development and decreases (i.
View Article and Find Full Text PDFBackground: The organization of the brain into distinct networks increases (i.e., differentiation) during development and decreases (i.
View Article and Find Full Text PDFBackground: Excessive daytime sleepiness (EDS) is a disabling symptom of Lewy body disorders (LBD). The hypothalamus is a key sleep-wake regulator and is involved in Lewy pathology, but its contribution to EDS in LBD remains unclear.
Objectives: To use diffusion-weighted magnetic resonance imaging (MRI) to detect hypothalamic microstructure and determine its relationship to EDS symptoms in LBD in an exploratory investigation.
Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.
View Article and Find Full Text PDFBackground: Excessive daytime sleepiness (EDS) is a disabling symptom of Lewy body disorders (LBD). The hypothalamus is a key sleep-wake regulator, but its contribution to EDS in LBD remains unclear.
Objectives: Use diffusion MRI to evaluate the relationship of hypothalamic microstructure to EDS symptoms in LBD.
Introduction: Multimodal evidence indicates Alzheimer's disease (AD) is characterized by early white matter (WM) changes that precede overt cognitive impairment. WM changes have overwhelmingly been investigated in typical, amnestic mild cognitive impairment and AD; fewer studies have addressed WM change in atypical, non-amnestic syndromes. We hypothesized each non-amnestic AD syndrome would exhibit WM differences from amnestic and other non-amnestic syndromes.
View Article and Find Full Text PDFAging dogs serve as a valuable preclinical model for Alzheimer's disease (AD) due to their natural age-related development of β-amyloid (Aβ) plaques, human-like metabolism, and large brains that are ideal for studying structural brain aging trajectories from serial neuroimaging. Here we examined the effects of chronic treatment with the calcineurin inhibitor (CNI) tacrolimus or the nuclear factor of activated T cells (NFAT)-inhibiting compound Q134R on age-related canine brain atrophy from a longitudinal study in middle-aged beagles (36 females, 7 males) undergoing behavioral enrichment. Annual MRI was analyzed using modern, automated techniques for region-of-interest-based and voxel-based volumetric assessments.
View Article and Find Full Text PDFDiffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions.
View Article and Find Full Text PDFHead motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked.
View Article and Find Full Text PDFDuring adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated.
View Article and Find Full Text PDFDiffusion Spectrum Imaging (DSI) using dense Cartesian sampling of -space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of -space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions.
View Article and Find Full Text PDFRecent advances in diffusion imaging have given it the potential to non-invasively detect explicit neurobiological properties, beyond what was previously possible with conventional structural imaging. However, there is very little known about what cytoarchitectural properties these metrics, especially those derived from newer multi-shell models like Neurite Orientation Dispersion and Density Imaging (NODDI) correspond to. While these diffusion metrics do not promise any inherent cell type specificity, different brain cells have varying morphologies, which could influence the diffusion signal in distinct ways.
View Article and Find Full Text PDFRecent advances in diffusion-weighted imaging have enabled us to probe the microstructure of even gray matter non-invasively. However, these advanced multi-shell protocols are often not included in large-scale studies as they significantly increase scan time. In this study, we investigated whether one set of multi-shell diffusion metrics commonly used in gray matter (as derived from Neurite Orientation Dispersion and Density Imaging, NODDI) provide enough additional information over typical tensor and volume metrics to justify the increased acquisition time, using the cognitive aging framework in the human hippocampus as a testbed.
View Article and Find Full Text PDFThe overexpression of calcineurin leads to astrocyte hyperactivation, neuronal death, and inflammation, which are characteristics often associated with pathologic aging and Alzheimer's disease. In this study, we tested the hypothesis that tacrolimus, a calcineurin inhibitor, prevents age-associated microstructural atrophy, which we measured using higher-order diffusion MRI, in the middle-aged beagle brain ( = 30, male and female). We find that tacrolimus reduces hippocampal ( = 0.
View Article and Find Full Text PDFFront Aging Neurosci
April 2020
Aging, even in the absence of clear pathology of dementia, is associated with cognitive decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable in understanding some of these changes in live humans, non-invasively. Traditional tensor techniques have revealed that the integrity of the fornix and other white matter tracts significantly deteriorates with age, and that this deterioration is highly correlated with worsening cognitive performance.
View Article and Find Full Text PDF