Publications by authors named "Hailin Peng"

The present article describes a thermochemical hole burning (THB) effect on a charge-transfer complex triethylammonium bis-7,7,8,8-tetracyanoquinodimethane (TEA(TCNQ)(2)) using single-walled carbon nanotube (SWNT) scanning tunneling microscopy (STM) tips, which demonstrates the possibility of optimizing the THB storage materials and the writing tips for ultrahigh-density data storage. TEA(TCNQ)(2) is proven to be a high-performance THB storage material, which gives deeper holes and larger hole depth-to-diameter ratio as compared to the previous materials dipropylammonium bis-7,7,8,8-tetracyanoquinodimethane and N-methyl-N-ethylmorpholinium bis-7,7,8,8-tetracyanoquinodimethane. Instead of conventional Pt/Ir STM tips, SWNT tips made by a unique chemical assembly technique we developed have been shown to be excellent writing tips for greatly decreasing the hole sizes and increasing the storage density.

View Article and Find Full Text PDF

Phase-change memory materials have stimulated a great deal of interest although the size-dependent behaviors have not been well studied due to the lack of method for producing their nanoscale structures. We report the synthesis and characterization of GeTe and Sb(2)Te(3) phase-change nanowires via a vapor-liquid-solid growth mechanism. The as-grown GeTe nanowires have three different types of morphologies: single-crystalline straight and helical rhombohedral GeTe nanowires and amorphous curly GeO(2) nanowires.

View Article and Find Full Text PDF

The diffusion-limited trapping reaction kinetics of the growth of the depletion zone within and around a "slit-shaped" trap in a flat microchannel was studied experimentally and numerically. In the experiment, an ellipse-shaped laser beam acted as a slit trap in a long, flat capillary, and the trapping reaction is photobleaching of fluorescein dye. The parameter studied was the theta distance, i.

View Article and Find Full Text PDF

We study the anomalous growth of the depletion zone at a single trap, as observed in a photobleaching trapping reaction in confined geometry. We provide experimental evidence for a nonuniversal growth of this depletion. We also find an early-time behavior of the depletion zone, owing to the finite size of the trap.

View Article and Find Full Text PDF

Using poly(5-{[(4'-heptoxy-4-biphenylyl)carbonyl]oxy}-1-pentyne) as an example, we demonstrate the incorporative accommodation of the rigid polyacetylene backbones and the mesogenic pendants, which leads to a highly ordered smectic (Sm) phase with a frustrated structure. The polymer exhibits a recognizable sheetlike molecular shape due to its rigid backbone and relatively short spacer (three methylene units), and the building block of the liquid crystalline (LC) phase is the whole molecule. In the LC phase, five layers of the molecules stack as a smectic A (SmA) block, and adjacent SmA blocks glide halfway of the molecular width from one to another.

View Article and Find Full Text PDF

The diffusion-limited kinetics of the growth of a depletion zone around a static point trap in a thin, long channel geometry was studied using a laser photobleaching experiment of fluorescein dye inside a flat rectangular capillary. The dynamics of the depletion zone was monitored by the theta distance, defined as the distance from the trap to the point where the reactant concentration has been locally depleted to the specified survival fraction (theta) of its initial bulk value. A dimensional crossover from two dimensions to one dimension, due to the finite width of the reaction zone, was observed.

View Article and Find Full Text PDF

The kinetics of the growth of depletion zones around a static trap in an effective two-dimensional geometry were studied experimentally with photobleaching of fluorescein dye by a focused laser beam. The phototrap served as an imperfect trap with a finite size. The growth of the depletion zone was monitored by the theta distance, defined as the distance from the trap to the point where the concentration of the reactants reaches a given arbitrary fraction theta (0 View Article and Find Full Text PDF