ATP10B, a transmembrane lipid flippase located in late endosomes and lysosomes, facilitates the export of glucosylceramide and phosphatidylcholine by coupling this process to ATP hydrolysis. Recently, loss-of-function mutations in the ATP10B gene have been identified in Parkinson's disease patients, pointing to ATP10B as a candidate genetic risk factor. Previous studies have shown compromised lysosomal functionality upon ATP10B knockdown in human cell lines and primary cortical neurons.
View Article and Find Full Text PDFBackground: Mutations in PSEN1 cause familial Alzheimer's disease with almost complete penetrance. Age at onset is highly variable between different PSEN1 mutations and even within families with the same mutation. Current research into late onset Alzheimer's disease implicates inflammation in both disease onset and progression.
View Article and Find Full Text PDFAccumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate.
View Article and Find Full Text PDFPreys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behavior is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2019
Proc Natl Acad Sci U S A
February 2018
The buckminsterfullerene (C60) is considered as a relevant candidate for drug and gene delivery to the brain, once it has the ability to cross the blood-brain barrier. However, the biological implications of this nanomaterial are not fully understood, and its safety for intracerebral delivery is still debatable. In this study, we investigated if C60 particle size could alter its biological effects.
View Article and Find Full Text PDFAnxiety is an adaptive response to potentially threatening situations. Exaggerated and uncontrolled anxiety responses become maladaptive and lead to anxiety disorders. Anxiety is shaped by a network of forebrain structures, including the hippocampus, septum, and prefrontal cortex.
View Article and Find Full Text PDFTarget of rapamycin (TOR) is a protein kinase involved in the modulation of mRNA translation and, therefore, in the regulation of protein synthesis. In neurons, the role of TOR is particularly important in the consolidation of long-term memory (LTM). One of the modulators of TOR is brain-derived neurotrophic factor (BDNF), which activates the TOR signaling pathway to promote protein synthesis, synapse strengthening, and the creation of new neural networks.
View Article and Find Full Text PDF