Nanophotonics
August 2025
On-chip computing metasystems composed of multilayer metamaterials have the potential to become the next-generation computing hardware endowed with light-speed processing ability and low power consumption but are hindered by current design paradigms. To date, neither numerical nor analytical methods can balance efficiency and accuracy of the design process. To address the issue, a physics-inspired deep learning architecture termed electromagnetic neural network (EMNN) is proposed to enable an efficient, reliable, and flexible paradigm of inverse design.
View Article and Find Full Text PDFThree-dimensional (3D) perception is vital to drive mobile robotics' progress toward intelligence. However, state-of-the-art 3D perception solutions require complicated postprocessing or point-by-point scanning, suffering computational burden, latency of tens of milliseconds, and additional power consumption. Here, we propose a parallel all-optical computational chipset 3D perception architecture (Aop3D) with nanowatt power and light speed.
View Article and Find Full Text PDFThis paper describes the design, fabrication, and testing of a pneumatically controlled, renewable, microfluidic device for conducting bead-based assays in an automated sequential injection analysis system. The device used a "brick wall"-like pillar array (pillar size: 20 μm length × 50 μm width × 45 μm height) with 5 μm gaps between the pillars serving as the micro filter. The flow channel where bead trapping occurred is 500 μm wide × 75 μm deep.
View Article and Find Full Text PDFA renewable flow cell integrating a microstructured pillar-array filter and a pneumatic microvalve was microfabricated to trap and release beads. A bead-based immunoassay using this device was also developed. This microfabricated device consists of a microfluidic channel connecting to a beads chamber in which the pillar-array filter is built.
View Article and Find Full Text PDFA novel and versatile processing method was developed for the formation of gel scaffolds with in situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow-induced immobilization technique opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site monitoring of a variety of toxic organophosphorus compounds.
View Article and Find Full Text PDF