Glycolysis in A. niger, a key organism in industrial biotechnology, provides essential precursors for efficient citric acid production. Glucose-6-phosphate dehydrogenase (G6PD), encoded by the gene gsdA, is a critical point in the cellular metabolism as it determines the metabolic fate of glucose-6-phosphate by redirecting it into the pentose phosphate pathway (PPP).
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT) and African animal trypanosomosis (AAT) are devastating diseases spread by tsetse flies (Glossina spp.), affecting humans and livestock, respectively. Current efforts to manage these diseases by eliminating the vector through the sterile insect technique (SIT) require transportation of irradiated late-stage tsetse pupae under chilling, which has been reported to reduce the biological quality of emerged flies.
View Article and Find Full Text PDFBackground: Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence.
View Article and Find Full Text PDFThe Sterile Insect Technique (SIT) is a successful autocidal control method that uses ionizing radiation to sterilize insects. However, irradiation in normal atmospheric conditions can be damaging for males, because irradiation generates substantial biological oxidative stress that, combined with domestication and mass-rearing conditions, may reduce sterile male sexual competitiveness and quality. In this study, biological oxidative stress and antioxidant capacity were experimentally manipulated in Anastrepha suspensa using a combination of low-oxygen conditions and transgenic overexpression of mitochondrial superoxide dismutase (SOD2) to evaluate their role in the sexual behavior and quality of irradiated males.
View Article and Find Full Text PDFTsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies.
View Article and Find Full Text PDFBackground: Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level.
View Article and Find Full Text PDFBackground: Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology.
View Article and Find Full Text PDFBackground: Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT).
View Article and Find Full Text PDFBackground: Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases.
View Article and Find Full Text PDFJ Econ Entomol
February 2019
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is arguably the most significant and studied quarantine pest of fresh fruits. There is well over a century of research observations on its response to cold, first as it pertains to shipment of fruits using cold temperatures to preserve fruit quality and how that may aid the survival and distribution of the pest, and then the use of colder temperatures to kill the pest in fruit shipments. Cold tolerance at 1.
View Article and Find Full Text PDFFront Microbiol
April 2018
Salivary gland hytrosaviruses (SGHVs, family ) are non-occluded dsDNA viruses that are pathogenic to some dipterans. SGHVs primarily replicate in salivary glands (SG), thereby inducing overt salivary gland hypertrophy (SGH) symptoms in their adult hosts. SGHV infection of non-SG tissues results in distinct pathobiologies, including reproductive dysfunctions in tsetse fly, (Diptera: Glossinidae) and house fly.
View Article and Find Full Text PDF