Publications by authors named "Guiqiong Yang"

Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous agricultural plasticizer, readily leaches into soils. Earthworm-mediated DEHP biodegradation and microplastics (MPs) co-contamination effects on vermicomposting remain uncharacterized. This study evaluated DEHP biodegradation and metabolic pathways in polyethylene microplastic-added soil under earthworm activity.

View Article and Find Full Text PDF
Article Synopsis
  • Di-2-ethylhexyl phthalate (DEHP) is a harmful environmental contaminant that poses risks to human health, which has led to limited studies on its effects in coastal saline soils.
  • Using straw carbonization returning improved sea rice yield by enhancing soil nutrients and reducing salt stress, achieving a DEHP degradation efficiency of up to 78.27%.
  • The study identified key metabolic genes involved in DEHP degradation and demonstrated that the process shifts from one degradation pathway to another, providing insights into both agricultural benefits and contamination remediation strategies.
View Article and Find Full Text PDF

Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.

View Article and Find Full Text PDF

The intensive accumulation of di-2-ethylhexyl phthalate (DEHP) in agricultural soils has resulted in severe environmental pollution that endangers ecosystem and human health. Biochar is an eco-friendly material that can help in accelerating organic pollutant degradation; nevertheless, its roles in enhancing DEHP removal in rhizosphere remain unclear. This work investigated the impacts of biochar dosage (0%-2.

View Article and Find Full Text PDF

Biochar-assisted vermicomposting can significantly accelerate soil DEHP degradation, but little information is known about the underlying mechanisms as different microspheres exist in soil ecosystem. In this study, we identified the active DEHP degraders in biochar-assisted vermicomposting by DNA stable isotope probing (DNA-SIP) and surprisingly found their different compositions in pedosphere, charosphere and intestinal sphere. Thirteen bacterial lineages (Laceyella, Microvirga, Sphingomonas, Ensifer, Skermanella, Lysobacter, Archangium, Intrasporangiaceae, Pseudarthrobacter, Blastococcus, Streptomyces, Nocardioides and Gemmatimonadetes) were responsible for in situ DEHP degradation in pedosphere, whereas their abundance significantly changed in biochar or earthworm treatments.

View Article and Find Full Text PDF