Physical activity (PA) is a fundamental aspect of preventive medicine, offering profound benefits for cardiovascular health and overall well-being. Despite its widespread benefits, the molecular mechanisms underlying PA-induced improvements in microvascular functions remain poorly understood. The skin microvasculature is uniquely affected by exercise-induced shear stress, especially during thermoregulation.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Genome-wide association studies have identified 4 common inherited variants associated with AML risk, but these findings have not yet been confirmed in many independent data sets. Here, we performed a replication study with 567 AML cases from the Leucegene cohort and 1865 controls from the population-based cohort CARTaGENE (CaG).
View Article and Find Full Text PDFPolygenic scores (PGSs) for body mass index (BMI) may guide early prevention and targeted treatment of obesity. Using genetic data from up to 5.1 million people (4.
View Article and Find Full Text PDFWhile international efforts have characterized genetic variation in millions of individuals, the interplay of environmental, social, cultural, and genetic factors is poorly understood for most worldwide populations. The province of Quebec in Canada has been the site of numerous genetic studies, often focusing on individual Mendelian diseases in founder sub-populations. Here, we profiled and analyzed genome-wide genotyped variation in 29,337 Quebec residents from the large population-based cohort CARTaGENE (CaG), including rich phenotype and environmental data.
View Article and Find Full Text PDFPhysiol Rev
October 2025
Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with cardiovascular traits and diseases. These studies have increased our understanding of the genetic architecture of cardiac diseases and have facilitated the identification of genetic risk factors in patients. Furthermore, they have spurred the development of novel effective therapies by targeting the causal disease pathways.
View Article and Find Full Text PDFRecent studies suggest that vascular senescence and its associated inflammation fuel the inflammaging to favor atherogenesis; whether these pathways can be therapeutically targeted in coronary artery disease (CAD) patients remains unknown. In a randomized, double-blind trial, 97 patients (78 men) undergoing coronary artery bypass graft surgery were treated with either quercetin (500 mg twice daily, 47 patients) or placebo (50 patients) for two days pre-surgery through hospital discharge. Primary outcomes were reduced inflammation and improved endothelial function ex vivo.
View Article and Find Full Text PDFThe dysregulation of gene expression programs in the human atria during persistent atrial fibrillation (AF) is not completely understood. Here, we reanalyze bulk RNA-sequencing datasets from two studies (N = 242) and identified 755 differentially expressed genes in left atrial appendages of individuals with persistent AF and non-AF controls. We combined the bulk RNA-sequencing differentially expressed genes with a left atrial appendage single-nucleus multi-omics dataset to assign genes to specific atrial cell types.
View Article and Find Full Text PDFBackground: The clinical impact of genetic testing in a contemporary real-life cohort of patients with heritable cardiomyopathies or arrhythmias is not well defined. Additionally, the genetic spectrum of these conditions in the French-Canadian population is unknown, and interpretation of genetic variants can be challenging because of a known founder effect.
Objectives: This study sought to evaluate the clinical utility of arrhythmia and cardiomyopathy genetic testing and assess the utility of allele frequency data from a local reference population.
Known fetal haemoglobin (HbF)-modulating loci explain 10-24% variation of HbF level in Africans with Sickle Cell Disease (SCD), compared to 50% among Europeans. Here, we report fourteen candidate loci from a genome-wide association study (GWAS) of HbF level in patients with SCD from Cameroon, Tanzania, and the United States of America. We present results of cell-based experiments for FLT1 candidate, demonstrating expression in early haematopoiesis and a possible involvement in hypoxia associated HbF induction.
View Article and Find Full Text PDFAtherosclerosis
February 2025
Coronary artery disease (CAD) is due to atherosclerosis, a pathophysiological process that involves several cell-types and results in the accumulation of lipid-rich plaque that disrupt the normal blood flow through the coronary arteries to the heart. Genome-wide association studies have identified 1000s of genetic variants robustly associated with CAD or its traditional risk factors (e.g.
View Article and Find Full Text PDFSickle cell disease (SCD) is the most common monogenic disease in the world and is caused by mutations in the β-globin gene (HBB). Notably, SCD is characterized by extreme clinical heterogeneity. Inter-individual variation in fetal hemoglobin (HbF) levels strongly contributes to this patient-to-patient variability, with high HbF levels associated with decreased morbidity and mortality.
View Article and Find Full Text PDFJACC Basic Transl Sci
October 2024
Coronary artery disease (CAD) is more prevalent in men than in women, with endothelial dysfunction, prodromal to CAD, developing a decade earlier in middle-aged men. We investigated the molecular basis of this dimorphism ex vivo in arterial segments discarded during surgery of CAD patients. The results reveal a lower endothelial relaxant sensitivity in men, and a senescence-associated inflammaging transcriptomic signature in endothelial cells.
View Article and Find Full Text PDFCRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts.
View Article and Find Full Text PDFCRISPR base editing screens are powerful tools for studying disease-associated variants at scale. However, the efficiency and precision of base editing perturbations vary, confounding the assessment of variant-induced phenotypic effects. Here, we provide an integrated pipeline that improves the estimation of variant impact in base editing screens.
View Article and Find Full Text PDFBackground: Hypertension, clinically defined by elevated blood pressure (BP), is an important cause of mortality and morbidity worldwide. Many risk factors for hypertension are known, including a positive family history, which suggests that genetics contribute to interindividual BP variation. Genome-wide association studies (GWAS) have identified > 1000 loci associated with BP, yet the identity of the genes responsible for these associations remains largely unknown.
View Article and Find Full Text PDFGenetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake.
View Article and Find Full Text PDFGenome-wide association studies have identified >250 genetic variants associated with coronary artery disease (CAD), but the causal variants, genes and molecular mechanisms remain unknown at most loci. We performed pooled CRISPR screens to test the impact of sequences at or near CAD-associated genetic variants on vascular endothelial cell functions. Using CRISPR knockout, inhibition and activation, we targeted 1998 variants at 83 CAD loci to assess their effect on three adhesion proteins (E-selectin, ICAM1, VCAM1) and three key endothelial functions (nitric oxide and reactive oxygen species production, calcium signalling).
View Article and Find Full Text PDFEpigenomic profiling, including ATACseq, is one of the main tools used to define enhancers. Because enhancers are overwhelmingly cell-type specific, inference of their activity is greatly limited in complex tissues. Multiomic assays that probe in the same nucleus both the open chromatin landscape and gene expression levels enable the study of correlations (links) between these two modalities.
View Article and Find Full Text PDFGenetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake.
View Article and Find Full Text PDFBackground: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.
Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches.