Modern approaches to copper-mediated radiolabeling have proven an important addition to the radiochemical toolbox. Radiopharmaceuticals prepared using this methodology have been translated from preclinical PET studies into clinical trials, and it has been adapted for radionuclides beyond fluorine-18, enabling theranostic applications. The methodology is also beginning to benefit from AI-assisted radiochemistry development.
View Article and Find Full Text PDFThis report describes a method for the photochemical Cu-mediated fluorination of aryl iodides with AgF via putative aryl radical (Ar•) intermediates. It involves irradiating an aryl iodide with UVB light (λ = 313 nm) in the presence of a mixture of Cu and Cu salts and AgF. Under these conditions, fluorination proceeds at room temperature for substrates containing diverse substituents, including alkoxy and alkyl groups, ketones, esters, sulfonate esters, sulfonamides, and protected amines.
View Article and Find Full Text PDFThe development of positron emission tomography (PET) tracers capable of detecting α-synuclein (α-syn) aggregates in vivo would represent a breakthrough for advancing the understanding and enabling the early diagnosis of Parkinson's disease and related disorders. It also holds the potential to assess the efficacy of therapeutic interventions. However, this remains challenging due to different structures of α-syn aggregates, the need for selectivity over other structurally similar amyloid proteins, like amyloid-β (Aβ), which frequently coexist with α-syn pathology, and the low abundance of the target in the brain that requires the development of a high-affinity ligand.
View Article and Find Full Text PDFWe present a photo- and Cu-mediated C cyanation of bench-stable (hetero)aryl thianthrenium salts via an aryl radical addition pathway. The thianthrenium substrates can be readily accessed via C-H functionalization, and the radiocyanation protocol proceeds under mild conditions (<50 °C, 5 min) and can be automated using open-source, readily accessible augmentations to existing radiochemistry equipment.
View Article and Find Full Text PDFPositron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis.
View Article and Find Full Text PDFPreclinical models of neurological diseases and gene therapy are essential for neurobiological research. However, the evaluation of such models lacks reliable reporter systems for use with noninvasive imaging methods. Here, we report the development of a reporter system based on the CLIP-tag enzyme and [F]FBC, an F-labeled covalent CLIP-tag-ligand synthesized via a DoE-optimized and fully automated process.
View Article and Find Full Text PDFRecent Food and Drug Administration (FDA) approval of diagnostic and therapeutic radiopharmaceuticals and concurrent miniaturization of particle accelerators leading to improved access has fueled interest in the development of chemical transformations suitable for short-lived radioactive isotopes on the tracer scale. This recent renaissance of radiochemistry is paired with new opportunities to study fundamental chemical behavior and reactivity of elements to improve their production, separation, and incorporation into bioactive molecules to generate new radiopharmaceuticals. This outlook outlines pertinent challenges in the field of radiochemistry and indicates areas of opportunity for chemical discovery and development, including those of clinically established (C-11, F-18) and experimental radionuclides in preclinical development across the periodic table.
View Article and Find Full Text PDFProlactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039.
View Article and Find Full Text PDFA method to detect and quantify aggregated α-synuclein (αSYN) fibrils would drastically impact the current understanding of multiple neurodegenerative diseases, revolutionizing their diagnosis and treatment. Several efforts have produced promising scaffolds, but a notable challenge has hampered the establishment of a clinically successful αSYN positron emission tomography (PET) tracer: the requirement of high selectivity over the other misfolded proteins amyloid β (Aβ) and tau. By designing and screening a library of 2-styrylbenzothiazoles based on the selective fluorescent probe , this study aimed at developing a selective αSYN PET tracer.
View Article and Find Full Text PDFA technique to image α-synuclein (αSYN) fibrils in vivo is an unmet scientific and clinical need that would represent a transformative tool in the understanding, diagnosis, and treatment of various neurodegenerative diseases. Several classes of compounds have shown promising results as potential PET tracers, but no candidate has yet exhibited the affinity and selectivity required to reach clinical application. We hypothesized that the application of the rational drug design technique of molecular hybridization to two promising lead scaffolds could enhance the binding to αSYN up to the fulfillment of those requirements.
View Article and Find Full Text PDFsp. are apicomplexan parasites that cause significant morbidity and possible mortality in humans and valuable livestock. There are no drugs on the market that are effective in the population most severely affected by this parasite.
View Article and Find Full Text PDFGiven the clinical potential of poly(ADP-ribose) polymerases (PARP) imaging for the detection and stratification of various cancers, the development of novel PARP imaging probes with improved pharmacological profiles over established PARP imaging agents is warranted. Here, we present a novel F-labeled PARP radiotracer based on the clinically superior PARP inhibitor talazoparib. An automated radiosynthesis of [F]talazoparib (RCY: 13 ± 3.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2021
Neurodegenerative diseases such as Parkinson's disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies.
View Article and Find Full Text PDFA convenient and scalable base-free method for processing [F]fluoride as [F]TBAF is reported and applied to copper-mediated radiofluorination radiosyntheses. A central feature of this method is that a single production of [F]TBAF can be divided into small aliquots that can be used to perform multiple small-scale reactions in DoE optimization studies. The results of these studies can then be reliably translated to full batch tracer productions using automated synthesizers.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2020
New treatments for the diseases caused by apicomplexans are needed. Recently, we determined that tartrolon E (trtE), a secondary metabolite derived from a shipworm symbiotic bacterium, has broad-spectrum anti-apicomplexan parasite activity. TrtE inhibits apicomplexans at nM concentrations in vitro, including Cryptosporidium parvum, Toxoplasma gondii, Sarcocystis neurona, Plasmodium falciparum, Babesia spp.
View Article and Find Full Text PDFRecent advancements in F radiochemistry, such as the advent of copper-mediated radiofluorination (CMRF) chemistry, have provided unprecedented access to novel chemically diverse PET probes; however, these multicomponent reactions have come with a new set of complex optimization problems. Design of experiments (DoE) is a statistical approach to process optimization that is used across a variety of industries. It possesses a number of advantages over the traditionally employed "one variable at a time" (OVAT) approach, such as increased experimental efficiency as well as an ability to resolve factor interactions and provide detailed maps of a process's behavior.
View Article and Find Full Text PDFThe benefits of PET imaging of tumor hypoxia in patient management has been demonstrated in many examples and with various tracers over the last years. Although, the optimal hypoxia imaging agent has yet to be found, 2-nitroimidazole (azomycin) sugar derivatives-mimicking nucleosides-have proven their potential with [F]FAZA ([F]fluoro-azomycin--arabinoside) as a prominent representative in clinical use. Still, for all of these tracers, cellular uptake by passive diffusion is postulated with the disadvantage of slow kinetics and low tumor-to-background ratios.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
April 2018
The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S.
View Article and Find Full Text PDF