Publications by authors named "Gongyu Shi"

Age is a primary risk factor for chronic conditions, including age-related macular degeneration (AMD). Impairments in autophagy processes are implicated in AMD progression, but the extent of autophagy's contribution and its therapeutic potential remain ambiguous. This study investigated age-associated transcriptomic changes in autophagy pathways in the retinal pigment epithelium (RPE) and evaluated the protective effects of topical trehalose, an autophagy-enhancing small molecule, against light-induced outer retinal degeneration in mice.

View Article and Find Full Text PDF

Considering the strong electron-donating ability and the superior biocompatibility, the integration of zero-valent iron nanostructure Fe (electron-reservoir) and zero-valent boron nanostructure B offers great promise for fabricating novel ferroptosis nanoagents. Nevertheless, the controlled and facile synthesis of alloyed Fe and B nanostructure-FeB nanometallic glasses (NMGs) has remained a long-standing challenge. Herein, a complexion-reduction strategy is proposed for the controlled synthesis of FeB NMGs with greater electron donating capacity to activate the molecular oxygen for improved ferroptosis therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates that levels of IRAK-M decrease with age and oxidative stress, with genetic variants linked to a higher risk of developing AMD.
  • * Restoring IRAK-M in RPE cells shows promise in protecting against oxidative damage and retinal degeneration, indicating it could be a potential therapeutic avenue for AMD.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a drug called AZD5438 can help protect mitochondria, which are like power stations in our cells, from damage caused by another substance called CCCP.
  • They discovered that AZD5438 was better at keeping these power stations healthy compared to other similar drugs.
  • Tests on brain cells showed that AZD5438 not only kept the cells alive but also helped them work better, making it a promising option for future treatments.
View Article and Find Full Text PDF

SAFB1 is a DNA and RNA binding protein that is highly expressed in the cerebellum and hippocampus and is involved in the processing of coding and non-coding RNAs, splicing and dendritic function. We analyzed SAFB1 expression in the post-mortem brain tissue of spinocerebellar ataxia (SCA), Huntington's disease (HD), Multiple sclerosis (MS), Parkinson's disease patients and controls. In SCA cases, the expression of SAFB1 in the nucleus was increased and there was abnormal and extensive expression in the cytoplasm where it co-localized with the markers of Purkinje cell injury.

View Article and Find Full Text PDF

Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library.

View Article and Find Full Text PDF