Enzymatic reductive amination allows direct and stereoselective access to 1°, 2°, and 3° chiral amines under environmentally friendly reaction conditions. Enzyme discovery and engineering campaigns for this important transformation are crucial for industrial applications but currently rely on tedious and time-consuming screening of large libraries using expensive LC/LC-MS systems. Such engineering campaigns have also focused on optimizing a single aminase candidate per defined synthetic target.
View Article and Find Full Text PDFThe rise of antifungal resistance and limited treatment options highlight the urgent need for new drug classes. is a serious global health threat with few effective therapies. In this study, novel azole-based compounds were developed by modifying the azole core with cyclic heteroaliphatic linkers connecting aromatic and heteroaromatic rings.
View Article and Find Full Text PDFImine reductases (IREDs) are invaluable catalysts for enantioselective imine reduction and reductive amination of carbonyl compounds. Their synthetic versatility is, however, limited by their substrate scope, and new IREDs are needed. Current IREDs are closely related to the initially characterized enzymes, as their discovery has been driven by sequence homology searches.
View Article and Find Full Text PDFAllylic amines are a versatile class of synthetic precursors of many valuable nitrogen-containing organic compounds, including pharmaceuticals. Enzymatic allylic amination methods provide a sustainable route to these compounds but are often restricted to allylic primary amines. We report a biocatalytic system for the reductive -allylation of primary and secondary amines, using biomass-derivable cinnamic acids.
View Article and Find Full Text PDFSnakebite envenomation (SBE) is an important public health issue that is now receiving renewed attention following its reclassification as a Neglected Tropical Disease (NTD). Most incidences occur in rural areas of resource-limited countries, as such, timely and appropriate medical care for SBE is often inaccessible. The administration of anti-snake venom serum (ASV) is the only effective definitive treatment of SBE, but treatment failure to available ASVs is not uncommon.
View Article and Find Full Text PDFIn recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO to organic molecules.
View Article and Find Full Text PDFThe direct C-H carboxylation of aromatic compounds is an attractive route to the corresponding carboxylic acids, but remains challenging under mild conditions. It has been proposed that the first step in anaerobic microbial degradation of recalcitrant aromatic compounds is a UbiD-mediated carboxylation. In this study, we use the UbiD enzyme ferulic acid decarboxylase (Fdc) in combination with a carboxylic acid reductase to create aromatic degradation-inspired cascade reactions, leading to efficient functionalization of styrene through CO fixation.
View Article and Find Full Text PDFCarboxylic acid reductase (CAR) enzymes are large multi-domain proteins that catalyse the ATP- and NADPH-dependent reduction of wide range of acids to the corresponding aldehydes. This particular reaction is of considerable biotechnological interest. Recent advances in the structural and solution studies of isolated domain, di-domain and full-length CAR enzymes revealed valuable insights into the mechanism of carboxylic acid reduction activity.
View Article and Find Full Text PDFFungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2017
Biocatalytic retrosynthetic analysis of dibenz[c,e]azepines has highlighted the use of imine reductase (IRED) and ω-transaminase (ω-TA) biocatalysts to establish the key stereocentres of these molecules. Several enantiocomplementary IREDs were identified for the synthesis of (R)- and (S)-5-methyl-6,7-dihydro-5H-dibenz[c,e]azepine with excellent enantioselectivity, by reduction of the parent imines. Crystallographic evidence suggests that IREDs may be able to bind one conformer of the imine substrate such that, upon reduction, the major product conformer is generated directly.
View Article and Find Full Text PDFReductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2017
The reductive aminase from Aspergillus oryzae (AspRedAm) was combined with a single alcohol dehydrogenase (either metagenomic ADH-150, an ADH from Sphingobium yanoikuyae (SyADH), or a variant of the ADH from Thermoanaerobacter ethanolicus (TeSADH W110A)) in a redox-neutral cascade for the biocatalytic alkylation of amines using primary and secondary alcohols. Aliphatic and aromatic secondary amines were obtained in up to 99 % conversion, as well as chiral amines directly from the racemic alcohol precursors in up to >97 % ee, releasing water as the only byproduct.
View Article and Find Full Text PDFJ Infect Dev Ctries
October 2014
Sub-Saharan Africa, accounting for 70% of the 35 million people living with HIV worldwide, obviously carries the heaviest burden of the HIV epidemic. Moreover, the region's poor health system occasioned by limited resources and inadequate skilled clinical personnel usually makes decentralization of HIV care difficult. Therefore, quality diagnostics that are easy to use, inexpensive, and amenable for use at point of care (POC) are a dire necessity.
View Article and Find Full Text PDF