Publications by authors named "Gleb Pishchany"

The gut microbiota plays a pivotal role in maintaining human health with dysbiosis linked to a variety of diseases. Metagenome sequencing and robust statistical analysis have linked specific strains, including the gut bacterium , to Crohn's disease and ulcerative colitis, together known as inflammatory bowel disease (IBD). However, the roles of this and other strains in disease progression remain to be investigated.

View Article and Find Full Text PDF

Mammals regulate the localization, composition, and activity of their native microbiota at colonization sites. Lectins residing at these sites influence microbial populations, but their individual functions are often unclear. Intelectins are found in chordates at mucosal barriers, but their functions are not well characterized.

View Article and Find Full Text PDF

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants.

View Article and Find Full Text PDF

Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities.

View Article and Find Full Text PDF

Objective: This study aims to validate the existence of a microbiome within intraductal papillary mucinous neoplasm (IPMN) that can be differentiated from the taxonomically diverse DNA background of next-generation sequencing procedures.

Design: We generated 16S rRNA amplicon sequencing data to analyse 338 cyst fluid samples from 190 patients and 19 negative controls, the latter collected directly from sterile syringes in the operating room. A subset of samples (n=20) and blanks (n=5) were spiked with known concentrations of bacterial cells alien to the human microbiome to infer absolute abundances of microbial traces.

View Article and Find Full Text PDF

Soluble human lectins are critical components of innate immunity. Genetic models suggest that lectins influence host-resident microbiota, but their specificity for commensal and mutualist species is understudied. Elucidating lectins' roles in regulating microbiota requires an understanding of which microbial species they bind within native communities.

View Article and Find Full Text PDF
Article Synopsis
  • Disruption of microbial communities and their bioactive compounds is linked to inflammatory bowel diseases (IBD), with many microbial proteins remaining uncharacterized despite their potential bioactivity.
  • Researchers identified over 340,000 protein families possibly involved in gut inflammation related to IBD, with a significant portion previously uncharacterized, using a combination of metagenomic techniques.
  • The new methodology, called MetaWIBELE, helped validate findings and revealed that specific microbial proteins could influence host immune responses, offering insights into potential therapeutic targets for chronic diseases like IBD.
View Article and Find Full Text PDF

Herein is a report on the molecular exchange occurring between multilateral symbiosis partners-a tit-for-tat exchange that led to the characterization of two new metabolites, conocandin B (fungal-derived) and dentigerumycin F (bacterial-derived). The structures were determined by NMR, mass spectrometry, genomic analysis, and chemical derivatizations. Conocandin B exhibits antimicrobial activity against both the bacterial symbionts of fungus-growing ant and human pathogenic strains by selectively inhibiting FabH, thus disrupting fatty acid biosynthesis.

View Article and Find Full Text PDF

Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. , a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates.

View Article and Find Full Text PDF

Introduction of antibiotics into clinical use has contributed to some of the greatest improvements to public health in the 20th century. Most antibiotics are based on antimicrobials that were isolated from environmental microorganisms over 50 years ago, but emerging resistance requires discovery of new molecules and development of these molecules into therapeutics. Bioinformatic analyses of microbial genomes indicate that many more microbial bioactive molecules remain undiscovered.

View Article and Find Full Text PDF

The High Andean Paramo ecosystem is a unique neotropical mountain biome considered a diversity and evolutionary hotspot. Lichens, which are complex symbiotic structures that contain diverse commensal microbial communities, are prevalent in Paramos. There they play vital roles in soil formation and mineral fixation.

View Article and Find Full Text PDF

The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic.

View Article and Find Full Text PDF

The Brazilian stingless bee Scaptotrigona depilis requires the brood cells-associated fungus Zygosaccharomyces sp. as steroid source for metamorphosis. Besides the presence of Zygosaccharomyces sp.

View Article and Find Full Text PDF

Some anaerobic bacteria use insoluble minerals as terminal electron acceptors and discovering the ways in which electrons move through the membrane barrier to the exterior acceptor forms an active field of research with implications for both bacterial physiology and bioenergy. A previous study suggested that MR-1 utilizes a small, polar, redox active molecule that serves as an electron shuttle between the bacteria and insoluble acceptors, but the shuttle itself has never been identified. Through isolation and synthesis, we identify it as ACNQ (2-amino-3-carboxy-1,4-naphthoquinone), a soluble analog of menaquinone.

View Article and Find Full Text PDF

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures.

View Article and Find Full Text PDF

The larval stage of the stingless bee Scaptotrigona depilis must consume a specific brood cell fungus in order to continue development. Here we show that this fungus is a member of the genus Zygosaccharomyces and provides essential steroid precursors to the developing bee. Insect pupation requires ecdysteroid hormones, and as insects cannot synthesize sterols de novo, they must obtain steroids in their diet.

View Article and Find Full Text PDF

We announce the complete genome sequence ofBacillussp. strain SDLI1, isolated from larval gut of the stingless beeScaptotrigona depilis The 4.13-Mb circular chromosome harbors biosynthetic gene clusters for the production of antimicrobial compounds.

View Article and Find Full Text PDF

Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin.

View Article and Find Full Text PDF

S. aureus is a pathogenic bacterium that requires iron to carry out vital metabolic functions and cause disease. The most abundant reservoir of iron inside the human host is heme, which is the cofactor of hemoglobin.

View Article and Find Full Text PDF

Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway.

View Article and Find Full Text PDF

Iron is required for bacterial proliferation, and Staphylococcus aureus steals this metal from host hemoglobin during invasive infections. This process involves hemoglobin binding to the cell wall of S. aureus, heme extraction, passage through the cell envelope, and degradation to release free iron.

View Article and Find Full Text PDF

Staphylococcus aureus is a human pathogen that represents a tremendous threat to global public health. An important aspect of S. aureus pathogenicity is the ability to acquire iron from its host during infection.

View Article and Find Full Text PDF

Staphylococcus aureus, a bacterium responsible for tremendous morbidity and mortality, exists as a harmless commensal in approximately 25% of humans. Identifying the molecular machinery activated upon infection is central to understanding staphylococcal pathogenesis. We describe the heme sensor system (HssRS) that responds to heme exposure and activates expression of the heme-regulated transporter (HrtAB).

View Article and Find Full Text PDF