Publications by authors named "Giulia Notarangelo"

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4 T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4 T cell differentiation, and reduced cytokine production.

View Article and Find Full Text PDF
Article Synopsis
  • * In kidney cancer cells, G3PS works differently, where one part of the process goes much faster than the other part, helping the cancer cells grow.
  • * If a specific part of G3PS is turned off, it doesn’t stop the cell’s energy production but instead helps the cancer cells grow faster by producing more substances they need for building fats.
View Article and Find Full Text PDF

Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8 T cells and altered their metabolism and antitumor functions in an acute and reversible fashion.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is a unique metabolic niche that can inhibit T cell metabolism and cytotoxicity. To dissect the metabolic interplay between tumors and T cells, we establish an in vitro system that recapitulates the metabolic niche of the TME and allows us to define cell-specific metabolism. We identify tumor-derived lactate as an inhibitor of CD8 T cell cytotoxicity, revealing an unexpected metabolic shunt in the TCA cycle.

View Article and Find Full Text PDF
Article Synopsis
  • * BCAA catabolism is crucial for activating the key adipogenic regulator PPARγ and is facilitated by the mitochondrial protein SIRT4, which enhances BCAA breakdown through its action on MCCC.
  • * SIRT4 levels are reduced in adipose tissue of diabetic mice, hinting at its potential role in metabolic disorders by affecting BCAA metabolism during the early stages of fat cell development.
View Article and Find Full Text PDF

In a recent issue of Nature, Zhang et al. (2019) describe an additional histone post-translational modification, named histone lactylation. Following increased lactate production as a consequence of M1 polarization, histone lactylation regulates the induction of an M2-like phenotype in late stages of M1 macrophage activation to promote wound healing.

View Article and Find Full Text PDF

X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαβ+ T cells (αβDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor.

View Article and Find Full Text PDF

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines.

View Article and Find Full Text PDF

T cell stimulation is metabolically demanding. To exit quiescence, T cells rely on environmental nutrients, including glucose and the amino acids glutamine, leucine, serine, and arginine. The expression of transporters for these nutrients is tightly regulated and required for T cell activation.

View Article and Find Full Text PDF

Magnesium transporter 1 (MAGT1) critically mediates magnesium homeostasis in eukaryotes and is highly-conserved across different evolutionary branches. In humans, loss-of-function mutations in the gene cause X-linked magnesium deficiency with Epstein-Barr virus (EBV) infection and neoplasia (XMEN), a disease that has a broad range of clinical and immunological consequences. We have previously shown that EBV susceptibility in XMEN is associated with defective expression of the antiviral natural-killer group 2 member D (NKG2D) protein and abnormal Mg transport.

View Article and Find Full Text PDF

T cell-mediated immune responses are compromised in aged individuals, leading to increased morbidity and reduced response to vaccination. While cellular metabolism tightly regulates T cell activation and function, metabolic reprogramming in aged T cells has not been thoroughly studied. Here, we report a systematic analysis of metabolism during young versus aged naïve T cell activation.

View Article and Find Full Text PDF