Lancet Planet Health
April 2025
Background: The prevalence of allergy to aeroallergens is rising, driven by both environmental and lifestyle changes. However, the role of ubiquitous nitrogen enrichment in exacerbating pollen allergy remains unclear. This study aimed to investigate the impact of nitrogen on pollen allergenicity by connecting the resulting ecological changes with allergic outcomes.
View Article and Find Full Text PDFPremise: Plants and pollinators closely interact with each other to form complex networks of species interactions. Metabarcoding of pollen collections has recently been proposed as an advantageous method for the construction of such networks, but the extent to which diversity and community analyses depend on the extraction method and pollen concentration used remains unclear.
Methods: In this study, we used a dilution series of two pollen mixtures (a mock community and pooled natural pollen loads from bumblebees) to assess the effect of mechanical homogenization and two DNA extraction kits (spin column DNA extraction kit and magnetic bead DNA extraction kit) on the detected pollen richness and community composition.
Conversion of natural ecosystems into agricultural land may strongly affect the soil microbiome and the functioning of the soil ecosystem. Alternative farming systems, such as organic farming, have therefore been advocated to reduce this impact, yet the outcomes of different agricultural management regimes often remain ambiguous and their evaluations mostly lack a proper more natural benchmark. We used high-throughput amplicon sequencing, linear models, redundancy analyses, and co-occurrence network analyses to investigate the effect of organic and integrated pest management (IPM) on soil fungal and bacterial communities in both the crop and drive rows of apple orchards in Belgium, and we included semi-natural grasslands as a benchmark.
View Article and Find Full Text PDFCassava, forming starch-rich, tuberous roots, is an important staple crop in smallholder farming systems in sub-Saharan Africa. Its relatively good tolerance to drought and nutrient-poor soils may be partly attributed to the crop's association with arbuscular mycorrhiza fungi (AMF). Yet insights into AMF-community composition and richness of cassava, and knowledge of its environmental drivers are still limited.
View Article and Find Full Text PDFBackground: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are ubiquitous in agroecosystems, but their role in mediating agricultural yield remains contested. Field experiments testing effects of realistic agronomic practices of intensification on AM fungus composition and yields are scarce, especially in the low-input systems of sub-Saharan Africa. A large, full-factorial field experiment was conducted in South-Kivu (DR Congo), testing effects of fallow duration (6 vs.
View Article and Find Full Text PDFDespite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability.
View Article and Find Full Text PDFUrban trees provide many ecosystem services, including carbon sequestration, air quality improvement, storm water attenuation and energy conservation, to people living in cities. Provisioning of ecosystem services by urban trees, however, may be jeopardized by the typically poor quality of the soils in urban areas. Given their well-known multifunctional role in forest ecosystems, ectomycorrhizal fungi (EcM) may also contribute to urban tree health and thus ecosystem service provisioning.
View Article and Find Full Text PDFTrees in urban areas face harsh environmental conditions. Ectomycorrhizal fungi (EcM) form a symbiosis with many tree species and provide a range of benefits to their host through their extraradical hyphal network. Although our understanding of the environmental drivers and large scale geographical variation of EcM communities in natural ecosystems is growing, our knowledge of EcM communities within and across urban areas is still limited.
View Article and Find Full Text PDFAlthough it is well known that arbuscular mycorrhizal fungi (AMF) play a key role in the functioning of natural ecosystems, the underlying drivers determining the composition of AMF communities remain unclear. In this study, we established 138 sampling plots at 46 grassland sites, consisting of 26 acidic grasslands and 20 calcareous grasslands spread across eight European countries, to assess the relative importance of abiotic and biotic filtering in driving AMF community composition and structure in both the grassland soils and in the roots of 13 grassland plant species. Soil AMF communities differed significantly between acidic and calcareous grasslands.
View Article and Find Full Text PDFSpecies diversity is commonly hypothesized to result from trade-offs for different limiting resources, providing separate niches for coexisting species. As soil nutrients occur in multiple chemical forms, plant differences in acquisition of the same element derived from different compounds may represent unique niche dimensions. Because plant productivity of ecosystems is often limited by phosphorus, and because plants have evolved diverse adaptations to acquire soil phosphorus, a promising yet untested hypothesis is phosphorus resource partitioning.
View Article and Find Full Text PDF