Publications by authors named "Gerard B Conditt"

Drug-eluting resorbable scaffolds (DRS) are conceptually attractive for treatment of peripheral arterial disease, particularly below-the-knee. MOTIV is a peripheral variant of REVA Medical's well-established, radiopaque tyrosine-polycarbonate (Tyrocore) sirolimus-eluting DRS. The purpose of this study was to provide imaging and histopathologic data on vascular response to MOTIV in porcine peripheral arteries.

View Article and Find Full Text PDF

The study assessed chronic myocardial, coronary and systemic effects of intracoronary supersaturated oxygen (SSO) therapy. Left anterior descending coronary arteries of 40 swine were stented and randomized to 90-min selective intracoronary infusion of SSO (pO 760-1000 mmHg) or normoxemic saline. In 20 out of 40 animals, SSO delivery followed a 60-min balloon occlusion to induce myocardial infarction (MI).

View Article and Find Full Text PDF

The integration of the Absorb bioresorbable vascular scaffold (BVS) into the arterial wall has never been tested in an in vivo model of atherosclerosis. This study aimed to compare the long-term (up to 4 years) vascular healing responses of BVS to an everolimus-eluting metallic stent in the familial hypercholesterolemic swine model of atherosclerosis. The multimodality imaging and histology approaches indicate that the resorption and vascular integration profile of BVS is not affected by the presence of atherosclerosis.

View Article and Find Full Text PDF

Aims: Peripheral arteries are constantly exposed to deformation (elongation, twisting, shortening, compression) making bioresorbable scaffolds (BRS) a potentially attractive therapeutic alternative to metallic stents. We conducted a long-term pilot preclinical study of a novel sirolimus-eluting BRS in peripheral arteries.

Methods And Results: Fourteen BRS were deployed in iliofemoral arteries of seven healthy Yucatan miniswine and examined with imaging, pharmacokinetic, histopathologic, and polymer degradation techniques at 0, 30, 90, 180 days, 1, 2, and 3.

View Article and Find Full Text PDF

Background: New generation bioresorbable scaffolds (BRS) promise to improve the outcomes of current generation BRS technologies by decreasing wall thickness while maintaining structural strength. This study aimed to compare the biomechanical behavior and vascular healing profile of a novel thin-walled (98 μm) sirolimus-eluting ultrahigh molecular weight BRS (Magnitude, Amaranth Medical) to the Absorb everolimus-eluting bioresorbable vascular scaffold (Abbott Vascular).

Methods And Results: In vitro biomechanical testing showed lower number of fractures on accelerated cycle testing over time (at 21K cycles = 20.

View Article and Find Full Text PDF

Background: The first commercially available bioresorbable scaffold (BRS) had a strut thickness of 156 microns. As such, it had the potential for delivery challenges and higher thrombogenicity. The aim herein, is to evaluate biomechanical performance, pharmacokinetics and vascular healing of a novel thin strut (100 μm) sirolimus eluting BRS (MeRes-100, Meril Life Sciences, Gujarat, India) against the once clinically used BRS (Absorb BVS, Abbott, Santa Clara, CA) in porcine coronary arteries.

View Article and Find Full Text PDF

Background: Mechanical strength of bioresorbable scaffolds (BRS) is highly dependent on strut dimensions and polymer features. To date, the successful development of thin-walled BRS has been challenging. We compared the biomechanical behavior and vascular healing profile of a novel thin-walled (115 µm) sirolimus-eluting ultrahigh molecular weight amorphous poly-l-lactic acid-based BRS (APTITUDE, Amaranth Medical [AMA]) to Absorb (bioresorbable vascular scaffold [BVS]) using different experimental models.

View Article and Find Full Text PDF

Background: A polymer-free peripheral paclitaxel-eluting stent (PES, Zilver PTX, Cook, IN) has shown to improve vessel patency after superficial femoral angioplasty. A new-generation fluoropolymer-based PES (FP-PES; Eluvia, Boston Scientific, MA) displaying more controlled and sustained paclitaxel delivery promise to improve the clinical outcomes of first-generation PES. We sought to compare the biological effect of paclitaxel delivered by 2 different stent-coating technologies (fluoropolymer-based versus polymer-free) on neointimal proliferation and healing response in the familial hypercholesterolemic swine model of femoral restenosis.

View Article and Find Full Text PDF

Objectives: The aim of the study was to evaluate the biomechanical properties and healing pattern of novel sirolimus-eluting, ultrahigh molecular weight amorphous poly-L-lactic acid bioresorbable scaffolds (S-BRS) that have been postdilated by 0.55 and 0.8 mm beyond the nominal diameters within the pressure-diameter compliance chart range.

View Article and Find Full Text PDF

Aims: The vascular healing profile of polymers used in bioresorbable vascular scaffolds (BRS) has not been fully characterised in the absence of antiproliferative drugs. In this study, we aimed to compare the polymer biocompatibility profile and vascular healing response of a novel ultrahigh molecular weight amorphous PLLA BRS (FORTITUDE®; Amaranth Medical, Mountain View, CA, USA) against bare metal stent (BMS) controls in porcine coronary arteries.

Methods And Results: Following device implantation, optical coherence tomography (OCT) evaluation was performed at 0 and 28 days, and at one, two, three and four years.

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the biological efficacy of a novel lower-dose (2.5 µg/mm2) encapsulated paclitaxel nanocrystal-coated balloon (Nano-PCB) in the familial hypercholesterolaemic swine (FHS) model of iliofemoral in-stent restenosis.

Methods And Results: Nano-PCB pharmacokinetics were assessed in 20 femoral arteries (domestic swine).

View Article and Find Full Text PDF

Background: Clinically available bioresorbable scaffolds (BRS) rely on polymer crystallinity to achieve mechanical strength resulting in limited overexpansion capabilities and structural integrity when exposed to high-loading conditions. We aimed to evaluate the biomechanical behavior and vascular healing profile of a novel, sirolimus-eluting, high-molecular-weight, amorphous poly-l-lactic acid-based BRS (Amaranth BRS).

Methods And Results: In vitro biomechanical testing was performed under static and cyclic conditions.

View Article and Find Full Text PDF

Objectives: This study sought to compare the effect of paclitaxel-coated balloon (PCB) concentration on tissue levels and vascular healing using 3 different PCB technologies (In.Pact Pacific = 3 μg/mm(2), Lutonix = 2 μg/mm(2) and Ranger = 2 μg/mm(2)) in the experimental setting.

Background: The optimal therapeutic dose for PCB use has not been determined yet.

View Article and Find Full Text PDF

Intracoronary optical frequency domain imaging (OFDI), requires the displacement of blood for clear visualization of the artery wall. Radiographic contrast agents are highly effective at displacing blood however, may increase the risk of contrast-induced nephropathy. Flushing media viscosity, flow rate, and flush duration influence the efficiency of blood displacement necessary for obtaining diagnostic quality OFDI images.

View Article and Find Full Text PDF

Aims: To test the feasibility of a thoracoscopically assisted, off-pump, transcatheter ventricular reconstruction (TCVR) approach in an ovine model of left ventricular (LV) anteroapical aneurysm.

Methods And Results: Myocardial infarction (MI) was induced by coil occlusion of the middle left anterior descending artery and diagonals. Two months after MI creation, TCVR was performed via a minimal thoracotomy in eight sheep.

View Article and Find Full Text PDF

Objectives: This study sought to evaluate vascular drug uptake, distribution and response of second-generation paclitaxel coated balloon (PCB) (Cotavance, MEDRAD Interventional, Indianola, Pennsylvania) and compare it with first-generation technology, containing identical excipient and drug concentration.

Background: Original PCB technologies displayed a heterogeneous deposition of crystalline paclitaxel-iopromide inside the balloon folds, whereas second-generation PCBs consisted of more homogeneous, circumferential coatings.

Methods: Paclitaxel tissue uptake was assessed in 20 iliofemoral arteries of a domestic swine.

View Article and Find Full Text PDF

Aims: The routine use of paclitaxel-coated balloons (PCB) in combination with bare metal stents (BMS) in de novo coronary lesions has been questioned. In this study, we aimed to compare the vascular response of BMS implanted using a second-generation PCB (BMS+PCB) with the TAXUS stent (PES) and a BMS control (BMS) in the familial hypercholesterolaemic swine (FHS) model of coronary injury.

Methods And Results: A total of 17 stents (PES=6, BMS+PCB=6, and BMS=5) were implanted in the coronary territory of 10 FHS using a 20% overstretch injury ratio.

View Article and Find Full Text PDF

Large animal models of heart failure are essential in preclinical device testing. In sheep, catheter-based coil embolization of the left anterior descending and diagonal artery provides a minimally invasive and reproducible model of myocardial infarction (MI). Although widely used, this model has historically been plagued with a 30% mortality rate, both in the literature and in our own experience.

View Article and Find Full Text PDF

The administration of bone marrow-derived stem cells may provide a new treatment option for patients with heart failure. Transcatheter cell injection may require multi-imaging modalities to optimize delivery. This study sought to evaluate whether endomyocardial injection of mesenchymal precursor cells (MPCs) could be guided by real-time 3D echocardiography (RT3DE) in treating chronic, postinfarction (MI) left ventricular (LV) dysfunction in sheep.

View Article and Find Full Text PDF

Objectives: The authors aimed to validate a novel iliofemoral in-stent restenosis (ISR) model for the efficacy evaluation of paclitaxel-coated balloons (PCB) using the familial hypercholesterolemic swine (FHS).

Background: Most of the validation work regarding PCB technologies has been performed in the coronary territory of juvenile domestic swine. Although invaluable for safety evaluation, this model is not suited for the evaluation of the efficacy of peripheral PCB technologies.

View Article and Find Full Text PDF

Aims: Despite recent abundance of data on drug-coated balloon technology, the biological effects of paclitaxel coated balloon (PCB) treatment followed by bare metal stent (BMS) implantation in peripheral arteries (simulating bail-out stenting, a common clinical scenario), have not been published.

Methods And Results: PCB technology containing a paclitaxel-iopromide coating and identical iopromide-coated controls (without paclitaxel) were used in 16 porcine ilio-femoral arteries. The biological effects of inflating one (PCBx1) or two sequential (PCBx2) paclitaxel coated balloons before BMS implantation were compared to the single application of a control balloon (CCBx1; contrast coated balloons).

View Article and Find Full Text PDF

Aims: Device-based arterial closure is currently used to achieve haemostasis following percutaneous intervention. Little is known about the in vivo patterns of device absorption. We aimed to characterise the absorption dynamics following implantation of the Angio-Seal VIP closure device (AVCD) (St.

View Article and Find Full Text PDF