Publications by authors named "Geetha B Kumar"

K. pneumoniae has emerged as a major infectious threat due to its remarkable capacity for intracellular survival, virulence, and antibiotic resistance. It evades immune clearance by resisting phagocytosis through capsular polysaccharides and lipopolysaccharides, modulating macrophage polarization to create a permissive intracellular niche, and autophagic degradation.

View Article and Find Full Text PDF

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

Tuberculosis caused by the obligate intracellular pathogen, , is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications.

View Article and Find Full Text PDF

Objectives: We sought to analyse the antibiotic susceptibility profiles and molecular epidemiology of MDR clinical isolates from South India using non-MDR isolates as a reference.

Methods: We established a comprehensive clinical strain library consisting of 58 isolates collected from patients across the South Indian state of Kerala from March 2017 to July 2019. The strains were subject to antibiotic susceptibility testing, modified carbapenem inactivation method assay for carbapenemase production, PCR sequencing, comparative sequence analysis and quantitative PCR of MDR determinants associated with antibiotic efflux pump systems, fluoroquinolone resistance and carbapenem resistance.

View Article and Find Full Text PDF

causes severe infections in humans, resists multiple antibiotics, and survives in stressful environmental conditions due to modulations of its complex transcriptional regulatory network (TRN). Unfortunately, our global understanding of the TRN in this emerging opportunistic pathogen is limited. Here, we apply independent component analysis, an unsupervised machine learning method, to a compendium of 139 RNA-seq data sets of three multidrug-resistant international clonal complex I strains (AB5075, AYE, and AB0057).

View Article and Find Full Text PDF

Bacteriophage (phage) therapy is an alternative to traditional antibiotic treatments that is particularly important for multidrug-resistant pathogens, such as Pseudomonas aeruginosa. Unfortunately, phage resistance commonly arises during treatment as bacteria evolve to survive phage predation. During phage treatment of a P.

View Article and Find Full Text PDF

Tamarixetin, a flavonoid derived from Quercetin, was shown to possess anti-cancer properties in various types of cancer. However, the mechanism of action of this compound is not well understood. Observations from reverse docking and network pharmacology analysis, were validated by cell based studies to analyse the chemotherapeutic potential and elucidate the molecular mechanism of action of Tamarixetin in breast cancer.

View Article and Find Full Text PDF

Multidrug-resistant community-acquired infections caused by the opportunistic human pathogen are increasingly reported in India and other locations globally. Since this organism is ubiquitous in the environment, samples such as sewage and wastewater are rich reservoirs of bacteriophages. In this study, we report the isolation and characterization of a novel N4-like lytic bacteriophage, vB_Pae_AM.

View Article and Find Full Text PDF

Flavonoids possess a broad spectrum of pharmacological properties, including anti-cancer, anti-oxidant and immunomodulatory activities. The current study explored the potential of some less-studied flavonoids in inhibiting Matrix Metalloproteinase-9 (MMP-9), a prominent biomarker, upregulated in a variety of cancers and known to promote migration and invasion of cancer cells. Amongst these, Tamarixetin, a naturally occurring flavonoid derivative of Quercetin, demonstrated significant dose-dependent inhibition of MMP-9 expression.

View Article and Find Full Text PDF

Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies.

View Article and Find Full Text PDF

Up-regulation of MMP-2 and MMP-9 plays a significant role in promoting cancer progression by degrading the components of the extracellular matrix, thereby enhancing the migration of tumor cells. Although the antiproliferative and apoptotic effect of is well established, its effect on MMP-2 and MMP-9, a major target in several types of cancers, has not been studied. Powdered samples of various parts of A.

View Article and Find Full Text PDF

Earlier studies from our laboratory have demonstrated that Oxyresveratrol (OXY), a hydroxyl-substituted stilbene, exhibits potent inhibition of human melanoma cell proliferation. The present study defines a cytotoxic effect of OXY on the highly chemo-resistant, triple-negative human breast cancer cell line MDA-MB-231. OXY-mediated cell death resulted in accumulation of cells at the sub-G1 phase of the cell cycle, induced chromatin condensation, DNA fragmentation, phosphatidylserine externalization and PARP cleavage, indicative of apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme (GBM) is a highly aggressive brain tumor associated with poor survival rates and frequent recurrences, and the role of microRNAs (miRNAs) in its progression is crucial.
  • Researchers analyzed two datasets comparing miRNA expressions in GBM versus normal brain tissues to find potential miRNA signatures for prognosis and therapy.
  • Their findings highlighted six deregulated miRNAs linked to signaling pathways involved in cancer, particularly focusing on the hsa-miR-139-5p, which may serve as a valuable diagnostic biomarker and therapeutic target for improving patient outcomes.
View Article and Find Full Text PDF

Dysregulation of the dynamic balance between cell proliferation and cell death leads to several malignancies including cancer. Biflavones are known to possess anti-proliferative activity against numerous cancer cell lines. The current study was undertaken to understand the mechanism of action of the biflavonoid (I-3,II-3)-biacacetin on MDA-MB-231.

View Article and Find Full Text PDF

Earlier studies from our laboratory have demonstrated that clove bud oil (CBO) attenuates expression of certain virulence factors of Pseudomonas aeruginosa PAO1. Here, we probe more deeply into the effect of CBO on four pseudomonal proteases - elastase A, elastase B, protease IV and alkaline protease - each known to play key roles in disease pathogenesis. CBO inhibited the activity of these proteases present in the bacterial culture supernatant.

View Article and Find Full Text PDF

Earlier studies from our laboratory have identified Anacardic acid (AA) as a potent inhibitor of gelatinases (MMP-2 and 9), which are over-expressed in a wide variety of cancers (Omanakuttan et al., 2012). Disruption of the finely tuned matrix metalloproteinase (MMP) activator/inhibitor balance plays a decisive role in determining the fate of the cell.

View Article and Find Full Text PDF

The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells.

View Article and Find Full Text PDF

Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils.

View Article and Find Full Text PDF

Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA.

View Article and Find Full Text PDF

Quorum sensing (QS), a communication system involved in virulence of pathogenic bacteria like Pseudomonas aeruginosa is a promising target to combat multiple drug resistance. In vitro studies using clove bud oil (CBO) in P. aeruginosa revealed a concentration dependent attenuation of a variety of virulence factors including motility, extracellular DNA, exopolysaccharides and pigment production.

View Article and Find Full Text PDF

Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells.

View Article and Find Full Text PDF