Silicon-based hybrid photon-counting pixel detectors have become the standard for diffraction experiments of all types at low and moderate X-ray energies. More recently, hybrid pixel detectors with high- materials have become available, opening up the benefits of this technology for high-energy diffraction experiments. However, detection layers made of high- materials are less perfect than those made of silicon, so care must be taken to correct the data in order to remove systematic errors in detector response introduced by inhomogeneities in the detection layer, in addition to the variation of the response of the electronics.
View Article and Find Full Text PDFThe issue of preserving carbonatic stones of cultural heritage (CH) restored in the past that have undergone new decay phenomena is strongly emerging and conservation science has not yet found a reliable solution. In this paper, we propose the application of synchrotron radiation X-ray diffraction computed tomography (XRDCT) to explore the effects of using inorganic-mineral products (ammonium oxalate; ammonium phosphate) in sequence as a novel, compatible and effective re-treatment approach to consolidate decayed carbonatic stones already treated with inorganic-mineral treatments. High-quality XRDCT datasets were used to qualitatively/quantitatively investigate and 3D localize the complex mixture of crystalline phases formed after the conservation re-treatments within a porous carbonatic stone substrate.
View Article and Find Full Text PDFCorrection for '5D total scattering computed tomography reveals the full reaction mechanism of a bismuth vanadate lithium ion battery anode' by Jonas Sottmann , , 2022, , 27075-27085, https://doi.org/10.1039/D2CP03892G.
View Article and Find Full Text PDFWe have used 5D synchrotron total scattering computed tomography (TSCT) to understand the cycling and possible long term deactivation mechanisms of the lithium-ion battery anode bismuth vanadate. This anode material functions a combined conversion/alloying mechanism in which nanocrystals of lithium-bismuth alloy are protected by an amorphous matrix of lithium vanadate. This composite is formed during the first lithiation of the anode.
View Article and Find Full Text PDFThe characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
By decreasing the rate of physical vapor deposition, ZrCuAl metallic glasses with improved stability and mechanical performances can be formed, while the microscopic structural mechanisms remain unclear. Here, with scanning transmission electron microscopy and high-energy synchrotron X-ray diffraction, we found that the metallic glass deposited at a higher rate exhibits a heterogeneous structure with compositional fluctuations at a distance of a few nanometers, which gradually disappear on decreasing the deposition rate; eventually, a homogeneous structure is developed approaching ultrastability. This microscopic structural evolution suggests the existence of the following two dynamical processes during ultrastable metallic glass formation: a faster diffusion process driven by the kinetic energy of the depositing atoms, which results in nanoscale compositional fluctuations, and a slower collective relaxation process that eliminates the compositional and structural heterogeneity, equilibrates the deposited atoms, and strengthens the local atomic connectivity.
View Article and Find Full Text PDFInvited for the cover of this issue is Lucia Amidani and co-workers from the The European Synchrotron, Helmholtz Zentrum Dresden-Rossendorf, Lomonosov Moscow State University, Kurchatov Institute, and the Université Grenoble Alpes. The image depicts the atomic structure of the sample being viewed through "atomic googles", which represent the X-ray techniques used in this work. Read the full text of the article at 10.
View Article and Find Full Text PDFThe structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved.
View Article and Find Full Text PDFNanoscale
September 2020
The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO) particle size from bulk to nano can have a drastic effect on PuO properties. Here we report a full characterization of PuO nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L and M edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD).
View Article and Find Full Text PDFID15A is a newly refurbished beamline at the ESRF devoted to operando and time-resolved diffraction and imaging, total scattering and diffraction computed tomography. The beamline is optimized for rapid alternation between the different techniques during a single operando experiment in order to collect complementary data on working systems. The high available energy (up to 120 keV) means that even bulky and highly absorbing systems may be studied.
View Article and Find Full Text PDFLaSr[SiN](OF) with x = 0.489 was obtained as a microcrystalline product by metathesis at 1500 °C in a radio-frequency furnace starting from Si(NH), La(NH), SrH, LaF, and CeF. The structure of the new nitridosilicate oxide fluoride was determined by combining transmission electron microscopy (TEM) and single-crystal X-ray diffraction using a microfocused synchrotron beam.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2017
To improve lithium and sodium ion battery technology, it is imperative to understand how the properties of the different components are controlled by their chemical structures. Operando structural studies give us some of the most useful information for understanding how batteries work, but it remains difficult to separate out the contributions of the various components of a battery stack (e.g.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2017
The synthesis and the structural characterization of a cyclic hexapeptoid with four methoxyethyl and two propargyl side chains have disclosed the presence of a hydrate crystal form [form (I)] and an anhydrous crystal form [form (II)]. The relative amounts of form (I) and form (II) in the as-purified product were determined by Rietveld refinement and depend on the purification procedures. In crystal form (I), peptoid molecules assemble in a columnar arrangement by means of side-chain-to-backbone C=CH.
View Article and Find Full Text PDFThe structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite.
View Article and Find Full Text PDFJ Synchrotron Radiat
March 2011
This paper describes a tunable X-ray focusing apparatus, referred to as a transfocator, based on compound refractive lenses. By varying the number of lenses in the beam, the X-ray energy focused and the focal length can be varied continuously throughout a large range of energies and distances. The instrument can be used in both white and monochromatic beams to focus, pre-focus or collimate the beam.
View Article and Find Full Text PDFHierarchical self-assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with Fe(II) cations generates the [2x2] grid-type functional building modules 1 and 2, presenting spin-transition properties and preorganizing an array of coordination sites that sets the stage for a second assembly step. Indeed, binding of La(III) ions to 1 and of Ag(I) ions to 2 leads to a 1D columnar superstructure 3 and to a wall-like 2D layer 4, respectively, with concomitant modulation of the magnetic properties of 1 and 2.
View Article and Find Full Text PDFThe first structural data for [Fe(phen)(2)(NCSe)(2)] (obtained using the extraction method of sample preparation) in its high-spin, low-spin and LIESST induced metastable high-spin states have been recorded using synchrotron radiation single crystal diffraction. The space group for all of the spin states was found to be Pbcn. On cooling from the high-spin state (HS-1) at 292 K through the spin crossover at about 235 K to the low-spin state at 100 K (LS-1) the iron coordination environment changed to a more regular octahedral geometry and the Fe-N bond lengths decreased by 0.
View Article and Find Full Text PDFThe magnetism of a series of tetranuclear complexes of the [Fe4IIL4]8+ [2x2]-grid-type was investigated, revealing the occurrence of spin transition behavior within this class of compounds. The phenomenon depends directly on the nature of the substituent R(1) in the 2-position on the central pyrimidine group of the ligand L. All Fe(II) ions in compounds with R(1) substituents favoring strong ligand fields (R(1)=H; OH) remain completely in the diamagnetic low-spin state.
View Article and Find Full Text PDFIn a one-pot reaction, the tetranuclear iron chelate complex [Fe4(L4)4] 6 was generated from benzene-1,3,5-tricarboxylic acid trichloride (4), bis-tert-butyl malonate (5a), methyllithium, and iron(II) dichloride under aerobic conditions. Alternatively, hexanuclear iron chelate complex [Fe(L5)6] 7 was formed starting from bis-para-tolyl malonate (5b) by employing identical reaction conditions to those applied for the synthesis of 6. The clusters 6 and 7 are present as racemic mixtures of homoconfigurational (delta,delta,delta,delta)/(lambda,lambda,lambda,lambda)-fac or (delta,delta,delta,delta,delta,delta)/(lambda,lambda,lambda,lambda,lambda,lambda)-fac stereoisomers.
View Article and Find Full Text PDF