Muscle Nerve
November 2022
Introduction/aims: Spinal muscular atrophy (SMA) is an inherited neuromuscular disease caused by survival motor neuron (SMN) protein deficiency. Insulin-like growth factor-I (IGF-I) is a myotrophic and neurotrophic factor that has been reported to be dysregulated in in vivo SMA model systems. However, detailed analyses of the IGF-I system in SMA patients are missing.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a rare neurodegenerative disease caused by the absence of survival motor neuron (SMN) protein. SMN loss results in impairments of the cytoskeleton, including microtubules and regulatory proteins. However, the contribution of microtubule-associated proteins (MAPs) to microtubule dysregulations in SMA is not fully understood.
View Article and Find Full Text PDFDrug Dev Res
June 2022
Microtubules are dynamic cytoskeletal filaments composed of alpha- (α) and beta (β)-tubulin proteins. α-tubulin proteins are posttranslationally acetylated, and loss of acetylation is associated with axonal transport defects, a common alteration contributing to the pathomechanisms of several neurodegenerative diseases. Restoring α-tubulin acetylation by pharmacological inhibition of HDAC6, a primary α-tubulin deacetylase, can rescue impaired transport.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a devastating childhood disease primarily affecting lower motoneurons in the spinal cord. SMA is caused by the loss of functional survival of motoneuron (SMN) protein, leading to structural and functional alterations of the cytoskeleton in motoneurons and other cells. Loss of SMN results in impairments of microtubule architecture, but the underlying mechanisms are not completely understood.
View Article and Find Full Text PDFTurk J Med Sci
April 2018
Proximal spinal muscular atrophy (SMA) is an inherited neurodegenerative disease with a heterogeneous clinical phenotype. Although there is no cure for SMA, several strategies are currently being developed. In this review, we summarize the ongoing clinical trials and molecular mechanisms of successful approaches to SMA treatment.
View Article and Find Full Text PDFExercise studies in neuromuscular diseases like spinal muscular atrophy (SMA), a devastating disease caused by survival of motor neuron 1 ( SMN1) gene mutations, are drawing attention due to its beneficial effects. In this study, we presented a constructed arm cycling exercise protocol and evaluated the benefits on SMA patients. Five SMA type II patients performed 12 weeks of supervised arm cycling exercise.
View Article and Find Full Text PDFCytoskeletal rearrangement during axon growth is mediated by guidance receptors and their ligands which act either as repellent, attractant or both. Regulation of the actin cytoskeleton is disturbed in Spinal Muscular Atrophy (SMA), a devastating neurodegenerative disease affecting mainly motoneurons, but receptor-ligand interactions leading to the dysregulation causing SMA are poorly understood. In this study, we analysed the role of the guidance receptor PlexinD1 in SMA pathogenesis.
View Article and Find Full Text PDFSpinal muscular atrophy is an autosomal recessive motor neuron disease that is caused by mutation of the survival motor neuron gene (SMN1) but all patients retain a nearly identical copy, SMN2. The disease severity correlates inversely with increased SMN2 copy. Currently, the most promising therapeutic strategy for spinal muscular atrophy is induction of SMN2 gene expression by histone deacetylase inhibitors.
View Article and Find Full Text PDFVitamin D deficient rickets is prevalent in Turkey and a considerable number of children are at risk of growth retardation, impaired bone formation and fracture. In order to check whether vitamin D receptor (VDR) gene polymorphism relates to the vitamin D deficient rickets, we analyzed VDR gene FokI, TaqI and ApaI polymorphisms in 24 Turkish vitamin D deficient rickets patients and 100 healthy controls. We found that "A" (ApaI) allele is more abundant in patients than controls (83 vs 57%, p = 0.
View Article and Find Full Text PDF