Publications by authors named "Gabriel Wainstein"

Neuromodulators regulate large-scale brain network topology to support adaptive behaviour. Disease models offer a unique window into how neuromodulatory systems impact large-scale brain network organisation. Here, we take advantage of Parkinson's disease-with its profound dopaminergic loss and pro-dopaminergic treatment strategies-to inform how dopamine may influence large-scale brain organisation.

View Article and Find Full Text PDF

Perceptual updating has been hypothesised to rely on a network reset modulated by bursts of ascending neuromodulatory neurotransmitters, such as noradrenaline, abruptly altering the brain's susceptibility to changing sensory activity. To test this hypothesis at a large-scale, we analysed an ambiguous figures task using pupillometry and functional magnetic resonance imaging (fMRI). Behaviourally, qualitative shifts in the perceptual interpretation of an ambiguous image were associated with peaks in pupil diameter, an indirect readout of phasic bursts in neuromodulatory tone.

View Article and Find Full Text PDF

Despite their widespread use, we have limited knowledge of the mechanisms by which sedatives mediate their effects on brain-wide networks. This is, in part, due to the technical challenge of observing activity across large populations of neurons in normal and sedated brains. In this study, we examined the effects of the sedative dexmedetomidine, and its antagonist atipamezole, on spontaneous brain dynamics and auditory processing in zebrafish larvae, a stage when sex differentiation has not yet occurred.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the sedative dexmedetomidine affects brain activity and auditory processing in zebrafish larvae through advanced calcium imaging techniques.
  • Findings show that sedation results in a quieter brain state with reduced spontaneous activity and increased correlation of evoked auditory responses, allowing them to stand out more prominently.
  • The research concludes that sedation leads to a less dynamic brain network with higher stability, affecting sensory processing and potentially enhancing the clarity of auditory information.
View Article and Find Full Text PDF

In stressful or anxiety-provoking situations, most people with Parkinson's disease (PD) experience a general worsening of motor symptoms, including their gait impairments. However, a proportion of patients actually report benefits from experiencing-or even purposely inducing-stressful or high-arousal situations. Using data from a large-scale international survey study among 4324 people with PD and gait impairments within the online Fox Insight (USA) and ParkinsonNEXT (NL) cohorts, we demonstrate that individuals with PD deploy an array of mental state alteration strategies to cope with their gait impairment.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotransmitter receptors play a key role in signal transmission in the brain, but their organization and impact on brain function are not well understood.
  • Researchers created a comprehensive 3D normative atlas of 19 neurotransmitter receptors and transporters in the brains of over 1,200 healthy individuals using advanced imaging techniques.
  • The study revealed how these receptor profiles relate to brain structure, function, and even abnormalities linked with various mental disorders, paving the way for new research into brain organization and disorders.
View Article and Find Full Text PDF

The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis).

View Article and Find Full Text PDF

Neural dynamics are shaped and constrained by the projections of a small nucleus in the pons: the noradrenergic locus coeruleus (LC). Much like a bow to the brain's violin, activity in the LC lacks content specificity, but instead dynamically shapes the excitability and receptivity of neurons across the brain. In this review, we explain how the style of the bowing technique, which is analogous to different firing modes in the LC, affects distinct activity patterns in the rest of the brain.

View Article and Find Full Text PDF

Background: Freezing of gait is a complex paroxysmal phenomenon that is associated with a variety of sensorimotor, cognitive and affective deficits, and significantly impacts quality of life in patients with Parkinson's disease (PD). Despite a growing body of evidence that suggests anxiety may be a crucial contributor to freezing of gait, no research study to date has investigated neural underpinnings of anxiety-induced freezing of gait.

Objective: Here, we aimed to investigate how anxiety-inducing contexts might "set the stage for freezing," through the ascending arousal system, by examining an anxiety-inducing virtual reality gait paradigm inside functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Cognitive fluctuations are a characteristic and distressing disturbance of attention and consciousness seen in patients with Dementia with Lewy bodies and Parkinson's disease dementia. It has been proposed that fluctuations result from disruption of key neuromodulatory systems supporting states of attention and wakefulness which are normally characterised by temporally variable and highly integrated functional network architectures. In this study, patients with DLB (n = 25) and age-matched controls (n = 49) were assessed using dynamic resting state fMRI.

View Article and Find Full Text PDF

Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation.

View Article and Find Full Text PDF

Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics.

View Article and Find Full Text PDF

Attention Deficit/Hyperactive Disorder (ADHD) is diagnosed based on observed behavioral outcomes alone. Given that some brain attentional networks involve circuits that control the eye pupil, we monitored pupil size in ADHD- diagnosed children and also in control children during a visuospatial working memory task. We present here the full dataset, consisting of pupil size time series for each trial and subject.

View Article and Find Full Text PDF