Mice engineered for conditional, cell type-specific gene inactivation have dominated the field of mouse genetics because of the high efficiency of Cre-loxP-mediated recombination. Recent advances in CRISPR/Cas9 technologies have provided alternatives for rapid gene mutagenesis for loss-of-function (LOF) analysis. Whether these strategies can be streamlined for rapid genetic analysis with the efficiencies comparable with those of conventional genetic approaches has yet to be established.
View Article and Find Full Text PDFDopamine neurons of the ventral tegmental area (VTA) regulate reward association and motivation. It remains unclear whether there are distinct dopamine populations to mediate these functions. Using mouse genetics, we isolated two populations of dopamine-producing VTA neurons with divergent projections to the nucleus accumbens (NAc) core and shell.
View Article and Find Full Text PDFGeneralized fear is a maladaptive behavior in which non-threatening stimuli elicit a fearful response. Here, we demonstrate that discrimination between predictive and non-predictive threat stimuli is highly sensitive to probabilistic discounting and increasing threat intensity in mice. We find that dopamine neurons of the ventral tegmental area (VTA) encode both the negative valence of threat-predictive cues and the certainty of threat prediction.
View Article and Find Full Text PDFAlthough de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2013
P2X receptor channels open in response to the binding of extracellular ATP, a property that is essential for purinergic sensory signaling. Apo and ATP-bound X-ray structures of the detergent-solubilized zebrafish P2X4 receptor provide a blueprint for receptor mechanisms but unexpectedly showed large crevices between subunits within the transmembrane (TM) domain of the ATP-bound structure. Here we investigate both intersubunit and intrasubunit interactions between TM helices of P2X receptors in membranes using both computational and functional approaches.
View Article and Find Full Text PDF