Publications by authors named "Franck Jabot"

Earth harbours an extraordinary plant phenotypic diversity that is at risk from ongoing global changes. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change-shape the trait covariation that underlies plant phenotypic diversity. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands.

View Article and Find Full Text PDF

Although metacommunity ecology has been a major field of research in the last decades, with both conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has only emerged recently and consists mostly of repeated static analyses. Here we propose a novel analytical framework to assess metacommunity processes using path analyses of spatial and temporal diversity turnovers. We detail the principles and practical aspects of this framework and apply it to simulated datasets to illustrate its ability to decipher the respective contributions of entangled drivers of metacommunity dynamics.

View Article and Find Full Text PDF

The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET".

View Article and Find Full Text PDF

Community dynamics is influenced by multiple ecological processes such as environmental spatiotemporal variation, competition between individuals and demographic stochasticity. Quantifying the respective influence of these various processes and making predictions on community dynamics require the use of a dynamical framework encompassing these various components. We here demonstrate how to adapt the framework of stochastic community dynamics to the peculiarities of herbaceous communities, by using a short temporal resolution adapted to the time scale of competition between herbaceous plants, and by taking into account the seasonal drops in plant aerial biomass following winter, harvesting or consumption by herbivores.

View Article and Find Full Text PDF

A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth".

View Article and Find Full Text PDF

Background And Aims: Simple models of herbaceous plant growth based on optimal partitioning theory predict, at steady state, an isometric relationship between shoot and root biomass during plant ontogeny, i.e. a constant root-shoot ratio.

View Article and Find Full Text PDF

A model-based approach was developed to detect interspecific interactions during biofilm development. This approach relied on the comparison of experimental data with a simple null model of biofilm growth dynamics where individual species grew independently of one another, except that they competed for space. Such a model was directly parameterized with a 4D confocal image series of biofilms and then used as a null model to detect interspecific interactions between pairs of bacterial species.

View Article and Find Full Text PDF

Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes.

View Article and Find Full Text PDF

Ecologists and conservation biologists often study particular trophic groups in isolation, which precludes an explicit assessment of the impact of multitrophic interactions on community structure and dynamics. Network ecology helps to fill this gap by focusing on species interactions, but it often ignores spatial processes. Here, we are taking a step forward in the integration of metacommunity and network approaches by studying a model of bitrophic interactions in a spatial context.

View Article and Find Full Text PDF

The 2011 meeting of the European Ecological Federation took place in Ávila, Spain, from 26th September to 29th September. The French Ecological Society (SFE) and the Foundation for Research on Biodiversity (FRB) sponsored a session entitled 'Evolutionary history, ecosystem function and conservation biology: new perspectives'. We report on the main insights obtained from this symposium.

View Article and Find Full Text PDF

The neutral theory of biodiversity challenges the classical niche-based view of ecological communities, where species attributes and environmental conditions jointly determine community composition. Functional equivalence among species, as assumed by neutral ecological theory, has been recurrently falsified, yet many patterns of tropical tree communities appear consistent with neutral predictions. This may mean that neutral theory is a good first-approximation theory or that species abundance data sets contain too little information to reject neutrality.

View Article and Find Full Text PDF

I present a model of stochastic community dynamics in which death occurs randomly in the community, propagules disperse randomly from a regional pool, and recruitment of new individuals of a species is proportional to the species local abundance multiplied by its local competitive ability. The competitive ability of a species is assumed to be determined by a function of one trait of the species, and I call this function the environmental filtering function. I show that information on local species abundances in a network of plots, together with trait data for each species, enables the inference of both the immigration rate and the environmental filtering function in each plot.

View Article and Find Full Text PDF

We develop a statistical method to infer the parameters of Hubbell's neutral model of biodiversity using data on local species abundances and their phylogenetic relatedness. This method uses the approximate Bayesian computation (ABC) approach, where the data are summarized into a small number of informative summary statistics. We used three statistics: the number of species in the sample, Shannon H index of evenness and Shao and Sokal's B(1) index of phylogenetic tree imbalance.

View Article and Find Full Text PDF

Biological diversity is quantified for reasons ranging from primer design, to bioprospecting, and community ecology. As a common index for all levels, we suggest Shannon's (S)H, already used in information theory and biodiversity of ecological communities. Since Lewontin's first use of this index to describe human genetic variation, it has been used for variation of viruses, splice-junctions, and informativeness of pedigrees.

View Article and Find Full Text PDF