Publications by authors named "Francesco Saccoliti"

COVID-19 pandemic stimulated tremendous efforts to develop therapeutic strategies targeting SARS-CoV-2, leading to the evaluation of a wide range of potential treatments in clinical trials. However, effective therapeutics remain elusive when the development of new variants and the limits of antiviral drugs is considered. Therefore, the development of antiviral drugs against SARS-CoV-2 is of paramount importance.

View Article and Find Full Text PDF

Terminal deoxynucleotidyl transferase (TdT) is overexpressed in some cancer types, where it drives the mutagenic repair of double strand breaks through non canonical non-homologous end joining pathway. The TdT enzyme belongs to the X family of polymerases, together with the DNA polymerase λ (pol λ) and β (pol β). However, TdT exclusively displays template-independent nucleotide polymerisation.

View Article and Find Full Text PDF

Molecular-targeted therapies for the treatment of cystic fibrosis (CF) rely on small-molecule modulators that rescue the activity of the defective CF transmembrane conductance regulator (CFTR) anion channel. is a small molecule with subnanomolar potency in rescuing the function of mutant CFTR in bronchial epithelial cells from CF patients carrying the F508del-CFTR mutation. Considering the multifaceted interactions of CFTR with the plasma membrane and the complexity of the protein network within the cellular compartments, here we report the investigation of 's molecular mechanism in live cells.

View Article and Find Full Text PDF

, , and parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities.

View Article and Find Full Text PDF

The HIV-1 integrase (IN) plays a critical role in the viral lifecycle by integrating the viral DNA into the host chromosome. The catalytic function of IN has been exploited as a target, with five drugs acting as active site binders (IN strand transfer inhibitors, INSTIs). However, IN mutations conferring low-level resistance to INSTIs have been reported.

View Article and Find Full Text PDF

It has been more than four years since the first report of SARS-CoV-2, and humankind has experienced a pandemic with an unprecedented impact. Moreover, the new variants have made the situation even worse. Among viral enzymes, the SARS-CoV-2 main protease (M) has been deemed a promising drug target vs.

View Article and Find Full Text PDF

Developing drugs for brain infection by is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected were tested against .

View Article and Find Full Text PDF

Solid tumors are active tissues containing hypoxic regions and producing metabolic acids. By decreasing pH, cancer cells create a hostile environment for surrounding host cells and foster tumor growth and progression. By governing acid/base regulation, carbonic anhydrases (CAs) are involved in several physiological/pathological processes, including tumors.

View Article and Find Full Text PDF

Background: As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in species protozoan parasite life.

View Article and Find Full Text PDF

Unlabelled: Multiple combinations of antiretroviral drugs have remarkably improved the treatment of HIV-1 infection. However, life-long treatments and drug resistance are still an open issue that requires continuous efforts for the identification of novel antiviral drugs.

Background: The reverse transcriptase-associated ribonuclease H (RNase H) hydrolyzes the HIV genome to allow synthesizing viral DNA.

View Article and Find Full Text PDF

Background: Anti-phospholipid syndrome (APS) is characterized by arterial and/or venous thrombosis and pregnancy morbidity associated with the presence of "anti-phospholipid antibodies." Thrombosis may be the result of a hypercoagulable state related to activation of endothelial cells and platelets by anti-β2-glycoprotein I (β2-GPI) antibodies. Anti-β2-GPI antibodies induce a proinflammatory and procoagulant phenotype in these cells that, after activation, express tissue factor (TF), the major initiator of the clotting cascade, playing a role in thrombotic manifestations.

View Article and Find Full Text PDF

Novel anti-HIV agents are still needed to overcome resistance issues, in particular inhibitors acting against novel viral targets. The ribonuclease H (RNase H) function of the reverse transcriptase (RT) represents a validated and promising target, and no inhibitor has reached the clinical pipeline yet. Here, we present rationally designed non-diketo acid selective RNase H inhibitors (RHIs) based on the quinolinone scaffold starting from former dual integrase (IN)/RNase H quinolinonyl diketo acids.

View Article and Find Full Text PDF

Plant-based systems continue to play a pivotal role in healthcare, and their use has been extensively documented. L. is a genus comprising various herbaceous species, known by the trivial name Asphodelus.

View Article and Find Full Text PDF
Article Synopsis
  • True myrrh, a resinous substance used for medicinal purposes since ancient times, contains numerous metabolites, mainly sesquiterpenes, which have been challenging to identify due to degradation issues in traditional analysis methods like GC-MS.
  • This study utilized supercritical CO2 extraction to analyze myrrh's components more gently, and both HPLC and GC-MS were employed for this purpose.
  • The findings revealed that myrrh extracts, particularly when combined with vitamin E acetate, demonstrate antiviral effects against the influenza A virus, with bioactive compounds furanodienone and curzerene disrupting different stages of viral replication.
View Article and Find Full Text PDF

Background: Anticancer drug resistance is a challenging phenomenon of growing concern which arises from alteration in drug targets. Despite the fast speed of new chemotherapeutic agent design, the increasing prevalence of this phenomenon requires further research and treatment development. Recently, we reported a new aminopyrimidine compound-namely RDS 344-as a potential innovative anticancer agent.

View Article and Find Full Text PDF

Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers replaced the biologically sensitive diketo acid (DKA) with a new non-DKA framework, creating pyrrolyl-pyrazole carboxylic acids as potential RNase H inhibitors for HIV-1 treatment.
  • Among the synthesized compounds, the oxyphenylpyrrolyl-pyrazoles showed high inhibitory activity, with one being notably potent while also demonstrating selectivity for RNase H over integrase.
  • Docking studies and mutagenesis experiments revealed crucial structural features for effective RNase H interaction, and the new compounds also exhibited stability in serum compared to their DKA counterparts, raising their potential for treating drug-resistant HIV-1 variants.
View Article and Find Full Text PDF

Background: Polycomb repressive complex 2 (PRC2) is an epigenetic transcriptional repression system, whose catalytic subunit (ENHANCER OF ZESTE HOMOLOG 2, EZH2 in animals) is responsible for trimethylating histone H3 at lysine 27 (H3K27me3). In mammals, gain-of-function mutations as well as overexpression of EZH2 have been associated with several tumors, therefore making this subunit a suitable target for the development of selective inhibitors. Indeed, highly specific small-molecule inhibitors of EZH2 have been reported.

View Article and Find Full Text PDF

Background: Tegaserod (Zelnorm®) is a 5-hydroxytryptamine (serotonin) type 4 receptor agonist for the treatment of hypomotility disorders of the lower gastrointestinal tract associated with the irritable bowel syndrome with constipation (IBS-C).

Objective: The authors provide the reader with a better understanding on tegaserod mechanism of action, on its pharmacodynamics and pharmacokinetic properties, on safety and tolerability, with a summary of the key published clinical trials conducted in patients with irritable bowel syndrome (IBS). Its effects on colon inflammation have also been described.

View Article and Find Full Text PDF

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis.

View Article and Find Full Text PDF

Cannabis oils, namely concentrated cannabis extracts, are getting plenty of attention because of their therapeutic potential for treatment of patients with cancer, HIV, multiple sclerosis and several other pathologies. Here we propose the use of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) as alternative methods to the current protocols followed by pharmacists, the only authorized to manipulate standardized Cannabis. A third method, consisting of the use of Tween 20 as surfactant, was considered.

View Article and Find Full Text PDF

Recently, some synthetic nitrogen-based heterocyclic molecules, such as PJ34, have shown pronounced antitumor activity. Therefore, we designed and synthesized new derivatives characterized by a nitrogen-containing scaffold and evaluated their antiproliferative properties in tumor cells. We herein report the effects of three newly synthesized compounds on cell lines from three different human cancers: triple-negative breast cancer, colon carcinoma and glioblastoma.

View Article and Find Full Text PDF

We have designed and synthesized a series of new imidazole-based compounds structurally related to an antiprotozoal agent with nanomolar activity which we identified recently. The new analogues possess micromolar activities against Trypanosoma brucei rhodesiense and Leishmania donovani and nanomolar potency against Plasmodium falciparum. Most of the analogues displayed IC within the low nanomolar range against Trypanosoma cruzi, with very high selectivity toward the parasite.

View Article and Find Full Text PDF

The final stages of polio eradication are proving more difficult than the early phases, and the development of effective drugs and treatments is considered a priority; thus, the research is ongoing. A screening of our in-house chemical library against poliovirus Sabin strains led to the identification of compounds 5 and 6 as hits active at submicromolar concentrations. Derivatives of these compounds were synthesized as a preliminary structure-activity-relationship study.

View Article and Find Full Text PDF

Heparanase is the only mammalian endo-β-d-glucuronidase involved in a variety of major diseases. The up-regulation of heparanase expression increases tumor size, angiogenesis, and metastasis, representing a validated target in the anti-cancer field. To date, only a few small-molecule inhibitors have been described, but none have gotten through pre-clinical development.

View Article and Find Full Text PDF