Objective: The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.
View Article and Find Full Text PDFOsteoarthrosis (OA) is a leading cause of disability and early mortality, with no disease modifying treatment. Mitochondrial (MT) dysfunction and changes in energy metabolism, leading to oxidative stress and apoptosis, are main drivers of disease. In reaction to stress, mesenchymal stromal/stem cells (MSCs) donate their MT to damaged tissues.
View Article and Find Full Text PDFThe role of mitochondria in health and disease has dramatically changed in the last decade. Its complex integration into cell physiology is comprised of key metabolic functions of great importance in health maintenance. Treating obesity seems to improve overall mitochondria tissue malfunction; however, the extent of their impact on patients remains elusive due to the lack of follow-up studies.
View Article and Find Full Text PDFOocytes may carry mutations in their mitochondrial DNA (mtDNA) which affect fertility and embryo development leading to hereditary diseases or rejection. Mitochondrial replacement therapies (MRTs) such as polar body transfer, spindle transfer and pronuclear transfer, aim to change dysfunctional to normal mitochondria inside oocytes and zygotes resulting in healthier offspring. Even with promising results, MRTs techniques are invasive to oocytes and may negatively affect their viability and the success of the procedure.
View Article and Find Full Text PDFCell Mol Life Sci
March 2022
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2020
The fresh or cryopreserved human umbilical cord (HUC) and its byproducts, such as cells and extracts, have different uses in tissue regeneration. Defining what HUC byproduct is more effective in a particular application is a challenge. Furthermore, the methods of isolation, culture and preservation, may affect cell viability and regenerative properties.
View Article and Find Full Text PDFBackground: Artificial Mitochondrial Transfer or Transplant (AMT/T) can be used to reduce the stress and loss of viability of damaged cells. In MitoCeption, a type of AMT/T, the isolated mitochondria and recipient cells are centrifuged together at 4 °C and then co-incubated at 37 °C in normal culture conditions, inducing the transfer. Ultraviolet radiation (UVR) can affect mitochondria and other cell structures, resulting in tissue stress, aging, and immunosuppression.
View Article and Find Full Text PDFBackground: Ring chromosome 15 has been associated in previous studies with different clinical characteristic such as cardiac problems, digit and musculoskeletal abnormalities, and mental and motor problems among others. Only 97 clinical cases of ring chromosome 15 syndrome have been reported since 1966 and a common phenotype for these patients has not been established.
Case Presentation: The present case report describes a 15-month-old girl from the Amazon region of Ecuador, of Mestizo ancestry, who after cytogenetic tests showed a 46,XX,r(15) karyotype in more than 70% of metaphases observed.