Publications by authors named "Francesca Tomatis"

Background: Drug delivery to the brain is challenging due to the restrict permeability of the blood brain barrier (BBB). Recent studies indicate that BBB permeability increases over time during physiological aging likely due to factors (including extracellular vesicles (EVs)) that exist in the bloodstream. Therefore, inspiration can be taken from aging to develop new strategies for the transient opening of the BBB for drug delivery to the brain.

View Article and Find Full Text PDF

Background: Brain metastasis (BrM) is a devastating end-stage neurological complication that occurs in up to 50% of human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) patients. Understanding how disseminating tumor cells manage to cross the blood-brain barrier (BBB) is essential for developing effective preventive strategies. We identified the ecto-nucleotidase ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) as specifically enriched in the secretome of HER2+ brain metastatic cells, prompting us to explore its impact on BBB dysfunction and BrM formation.

View Article and Find Full Text PDF

The CRISPR/Cas9 system has emerged as a promising platform for gene editing; however, the lack of an efficient and safe delivery system to introduce it into cells continues to hinder clinical translation. Here, we report a rationally designed gene-editing nanoparticle (NP) formulation for brain applications: an sgRNA:Cas9 ribonucleoprotein complex is immobilized on the NP surface by oligonucleotides that are complementary to the sgRNA. Irradiation of the formulation with a near-infrared (NIR) laser generates heat in the NP, leading to the release of the ribonucleoprotein complex.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are communication channels between different cell types in the brain, between the brain and the periphery and vice-versa, playing a fundamental role in physiology and pathology. The evidence that EVs might be able to cross the blood-brain barrier (BBB) make them very promising candidates as nanocarriers to treat brain pathologies. EVs contain a cocktail of bioactive factors, yet their content and surface can be further engineered to enhance their biological activity, stability and targeting ability.

View Article and Find Full Text PDF

Stroke represents the second leading cause of mortality and morbidity worldwide. Ischemic strokes are the most prevalent type of stroke, and they are characterized by a series of pathological events prompted by an arterial occlusion that leads to a heterogeneous pathophysiological response through different hemodynamic phases, namely the hyperacute, acute, subacute, and chronic phases. Stroke treatment is highly reliant on recanalization therapies, which are limited to only a subset of patients due to their narrow therapeutic window; hence, there is a huge need for new stroke treatments.

View Article and Find Full Text PDF

In this study, hybrid nanocubes composed of magnetite (Fe O ) and manganese dioxide (MnO ), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H O ) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines.

View Article and Find Full Text PDF